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Abstract
In this paper we study kernel ridge-less regression, including the case of interpolating solutions. We prove
that maximizing the leave-one-out (CVloo) stability minimizes the expected error. Further, we also prove
that the minimum norm solution – to which gradient algorithms are known to converge – is the most stable
solution. More precisely, we show that the minimum norm interpolating solution minimizes a bound on
CVloo stability, which in turn is controlled by the smallest singular value, hence the condition number, of
the empirical kernel matrix. These quantities can be characterized in the asymptotic regime where both the
dimension (d) and cardinality (n) of the data go to infinity (with n

d
→ γ as d, n → ∞). Our results suggest

that the property of CVloo stability of the learning algorithm with respect to perturbations of the training set
may provide a more general framework than the classical theory of Empirical Risk Minimization (ERM).
While ERM was developed to deal with the classical regime in which the architecture of the learning network
is fixed and n, the number of training examples, goes to infinity, the modern regime focuses on interpolating
regressors and overparamerized models, when both d and n go to infinity. Since the stability framework is
known to be equivalent to the classical theory in the classical regime, our results here suggest that it may
be interesting to extend it beyond kernel regression to other overparametrized algorithms such as deep
networks.

1 Introduction
Statistical learning theory studies the learning properties of machine learning algorithms, and more funda-
mentally, the conditions under which learning from finite data is possible. In this context, classical learning
theory focuses on the size of the hypothesis space in terms of different complexity measures, such as com-
binatorial dimensions, covering numbers and Rademacher/Gaussian complexities (Boucheron et al., 2005;
Shalev-Shwartz & Ben-David, 2014). Another, more recent, approach is based on defining suitable notions of
stability with respect to perturbation of the data (Bousquet & Elisseeff, 2001; Kutin & Niyogi, 2002). In this
view, the continuity of the process that maps data to estimators is crucial, rather than the complexity of the
hypothesis space. Different notions of stability can be analyzed, depending on the data perturbation and
considered error metric (Kutin & Niyogi, 2002). Interestingly, the stability and complexity approaches to
characterizing the learnability of problems are not at odds with each other, and have been be shown to be
equivalent in the classical framework, as shown in Poggio et al. (2004) and Shalev-Shwartz et al. (2010).
In modern machine learning overparameterized models, with a number of parameters larger than the size of
the training data, have now become increasingly common. The ability of these models to generalize is well
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explained by classical statistical learning theory as long as some form of regularization is used in the training
process (Steinwart & Christmann, 2008; Bühlmann & Van De Geer, 2011). However, it was recently shown -
first for deep networks (Zhang et al., 2017), and more recently for kernel methods (Belkin et al., 2019, 2018) -
that learning is possible in the absence of regularization, i.e., when perfectly fitting/interpolating the data.
Recent work in statistical learning theory has tried to find theoretical ground for this empirical finding. Since
learning using models that interpolate is not exclusive to deep neural networks, we study generalization in
the presence of interpolation in the case of kernel methods, with linear models as a special case.

Our Contributions:

• We characterize the generalization properties of possibly interpolating kernel ridge-less regression
using a stability approach. While the (uniform) stability properties of regularized kernel methods are
well known (Bousquet & Elisseeff, 2001), we study unregularized (“ridgeless”) regression problems.

• We obtain an upper bound on the leave-one-out stability βCV (defined later) of solutions to the
kernel least squares problem, and show that this upper bound is minimized by the minimum norm
interpolating solution. This also means that among all interpolating solutions, the minimum norm
solution has the best test error1. In particular, the same conclusion is also true for gradient descent
and stochastic gradient descent, since these algorithms converge to the minimum norm solution in the
setting we consider, see e.g. Rosasco & Villa (2015).

• Our stability bounds show that the average stability of the minimum norm solution can be controlled
by the minimum eigenvalue of the empirical kernel matrix. It is well known that the numerical stability
of the least squares solution is governed by the condition number of the associated kernel matrix which
is closely related to the minimum eigenvalue (see the discussion of why overparametrization is “good”
in Poggio et al. (2019)). Our results show that the condition number also controls stability (and hence,
test error) in a statistical sense.

Paper Outline: The rest of the paper is organized as follows. In section 2, we introduce basic ideas in
statistical learning and empirical risk minimization, as well as the notation used in the rest of the paper. In
section 3, we briefly recall some definitions of stability and their connection to test error. In this section we
also provide a brief discussion about the promise of stability as a framework for the analysis of learning
algorithms. In section 4, we present our main results on the stability of kernel least squares. The proof of our
theorem is developed in section 6, where we also show that the minimum norm solutions minimize an upper
bound on the stability. In section 5 we discuss our results in the context of recent work on high dimensional
regression. We support our theoretical results with simulations in section 7 and conclude in section 8.

2 Statistical Learning and Empirical Risk Minimization
We begin by recalling the basic ideas in statistical learning theory. In this setting, X is the input space, Y is the
output space, and there is an unknown probability distribution µ on Z = X ×Y . In the following, we consider
X = Rd and Y = R. The distribution µ is fixed but unknown, and we are given a training set S consisting
of n samples (thus |S| = n) drawn i.i.d. from the probability distribution on Zn, S = (zi)n

i=1 = (xi, yi)n
i=1.

Intuitively, the goal of supervised learning is to use the training set S to “learn” a function fS that evaluated
at a new value xnew should predict the associated value of ynew, i.e. ynew ≈ fS(xnew).
The loss is a function V : F × Z → [0, ∞), where F is the space of measurable functions from X to Y ,
that measures how well a function performs on a data point. We define a hypothesis space H ⊆ F where
algorithms search for solutions. With the above notation, the expected risk of f is defined as I[f ] = EzV (f, z)
which is the expected loss on a new sample drawn according to the data distribution µ. In this setting,
statistical learning can be seen as the problem of finding an approximate minimizer of the expected risk

1This holds unless additional information is available, for instance about the data.
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given a training set S. A classical approach to derive an approximate solution is empirical risk minimization
(ERM) where we minimize the empirical risk IS [f ] = 1

n

∑n
i=1 V (f, zi).

A natural error measure for our ERM solution fS is the expected excess risk ES [I[fS ] − minf∈H I[f ]]. Another
common error measure is the expected generalization error/gap given by ES [I[fS ] − IS [fS ]]. These two error
measures are closely related since, the expected excess risk is easily bounded by the expected generalization
error (see Lemma 5).

2.1 Kernel Least Squares and Minimum Norm Solution
The focus in this paper is kernel least squares. We assume the loss function V is the square loss, that is,
V (f, z) = (y − f(x))2. The hypothesis space is assumed to be a reproducing kernel Hilbert space, defined
by a positive definite kernel K : X × X → R with Φ : X → H an associated feature map, such that
K(x, x′) = ⟨Φ(x), Φ(x′)⟩H for all x, x′ ∈ X , where ⟨·, ·⟩H is the inner product in H. In this setting, functions
are linearly parameterized, that is there exists w ∈ H such that f(x) = ⟨w, Φ(x)⟩H for all x ∈ X .
The ERM problem typically has multiple solutions, one of which is the minimum norm solution:

f†
S = arg min

f∈M
∥f∥H , M = arg min

f∈H

1
n

n∑
i=1

(f(xi) − yi)2, (1)

where ∥·∥H is the norm in H. The minimum norm solution is unique and satisfies a representer theorem, for
all x ∈ X :

f†
S(x) =

n∑
i=1

K(x, xi)cS,i, cS = K†y (2)

where cS = (cS,1, . . . , cS,n), y = (y1 . . . yn) ∈ Rn, K is the n by n matrix with entries Kij = K(xi, xj),
i, j = 1, . . . , n, and K† is the Moore-Penrose pseudoinverse of K. Since the input points are typically distinct,
it is possible to show that for many kernels one can replace K† by K−1 (see Remark 2). Note that invertibility
is necessary and sufficient for interpolation: if K is invertible, f†

S(xi) = yi for all i = 1, . . . , n, in which case
the training error in (1) is zero.
An alternative to using the explicit representation of the kernel matrix K is to represent linear functions in
the RKHS as f(x) = ⟨w, Φ(x)⟩ for w ∈ H. If we collect the RKHS features of the data Φ(xi) into the rows of
a linear operator X : H → Rn, then we can write the Kernel least square problem as minw∈H ||Xw − y||22.
All interpolating solutions to this problem are of the form ŵS = X†y + (IH − X†X)v for any v ∈ H. The
relationship between the kernel matrix K and the operator X is K = XX⊤.

Remark 1 (Pseudoinverse for underdetermined linear systems)
A simple, relevant example is the linear kernel where f(x) = w⊤x, H = Rd and Φ is the identity map. If the rank
of X ∈ Rn×d is n, then any interpolating solution wS satisfies w⊤

S xi = yi for all i = 1, . . . , n, and the minimum
norm solution, also called Moore-Penrose solution, is given by w†

S = X†y where the pseudoinverse X† takes the form
X† = (X⊤X)†X⊤.

Remark 2 (Invertibility of translation invariant kernels) Translation invariant kernels are a family of kernel
functions given by K(x1, x2) = k(x1 − x2) where k is an even function on Rd. Translation invariant kernels are
Mercer kernels (positive semidefinite) if the Fourier transform of k(·) is non-negative. For Radial Basis Function kernels
(K(x1, x2) = k(||x1 − x2||)) we have the additional property due to Theorem 2.3 of Micchelli (1986) that for distinct
points x1, x2, . . . , xn ∈ Rd the kernel matrix K is non-singular and thus invertible.

The above discussion is directly related to regularization approaches.

Remark 3 (Stability and Tikhonov regularization) Tikhonov regularization is used to prevent potential unstable
behaviors. In the above setting, it corresponds to replacing Problem (1) by minf∈H

1
n

∑n
i=1(f(xi) − yi)2 + λ ∥f∥2

H
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where the corresponding unique solution is given by fλ
S (x) =

∑n
i=1 K(x, xi)ci, c = (K+λnIn)−1y. In contrast

to ERM solutions, the above approach prevents interpolation. The properties of the corresponding estimator are well
known. In this paper, we complement these results focusing on the case λ → 0.

Finally, we end our introductory remarks by recalling the connection between minimum norm and the
gradient descent.

Remark 4 (Minimum norm and gradient descent) In our setting, it is well known that both batch and stochastic
gradient (SGD) iterations converge to the minimum norm solution when multiple solutions exist, see e.g. Rosasco &
Villa (2015). Thus, a study of the properties of the minimum norm solution explains the properties of the solution to
which SGD converges. In particular, when ERM has multiple interpolating solutions, gradient descent converges to a
solution minimizing a bound on stability, as we show next.

3 Error Bounds via Stability
In this section, we present the definition of stability that we will be using in the paper, and discuss how
stability may be a unifying framework for explaining learning in both the classical and modern regimes.
We first recall some basic results relating the learning and stability properties of Empirical Risk Minimization
(ERM). Throughout the paper, we assume that ERM achieves a minimum, albeit the extension to almost
minimizers is possible (Mukherjee et al., 2006) and important for exponential-type loss functions (Poggio,
2020). We do not require that a minimum exists for the expected risk. Since we will be considering leave-one-
out stability in this section, we look at solutions to ERM over the complete training set S = {z1, z2, . . . , zn}
and the leave one out training set S−i = {z1, z2, . . . , zi−1, zi+1, . . . , zn}
The excess risk of ERM can be easily related to its stability properties. Here, we follow the definition laid
out in Mukherjee et al. (2006) and say that an algorithm is Cross-Validation leave-one-out (CVloo) stable in
expectation, if there exists βCV > 0 such that for all i = 1, . . . , n,

ES [V (fS−i , zi) − V (fS , zi)] ≤ βCV . (3)

Here fS , fS−i
are the ERM solutions obtained on the full dataset and the leave one out dataset respectively.

This definition is justified by the following result that bounds the excess risk of a learning algorithm by its
average CVloo stability (Mukherjee et al., 2006; Shalev-Shwartz et al., 2010).

Lemma 5 (Excess Risk & CVloo Stability) For all i = 1, . . . , n,

ES [I[fS−i
] − inf

f∈H
I[f ]] ≤ ES [V (fS−i

, zi) − V (fS , zi)]. (4)

Remark 6 (Connection to other notions of stability) Uniform stability, introduced by Bousquet&Elisseeff (2001),
corresponds in our notation to the assumption that there existsβu > 0 such that for all i = 1, . . . , n, supz∈Z |V (fS−i

, z)−
V (fS , z)| ≤ βu. Clearly this is a strong notion implying most other definitions of stability. We note that there are
number of different notions of stability. We refer the interested reader to Kutin & Niyogi (2002) , Mukherjee et al.
(2006).

Lemma 5 is known andwe recall the proof in Appendix A.2 for completeness. In Appendix A, we also discuss
other definitions of stability and their connections to concepts in statistical learning theory like generalization
and learnability.

3.1 The stability framework: a unifying principle for the classical and modern regimes
Amilestone in classical learning theory was to formally show that appropriately restricting the hypothesis
space – that is the space of functions represented by the learning machine – ensures consistency (and
generalization) of ERM. The classical theory assumes that the hypothesis space is fixed while the number of
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training data n increases to infinity. Its basic results thus characterize the “classical” regime of n > d, where
d is the number of parameters to be learned. The classical theory, however, cannot deal with what we call
the “modern” regime, in which the network remains overparametrized (n < d) when n grows. In this case
the hypothesis space is not fixed: d increases as n increases. Different approaches that do not rely on the
hypothesis space were developed already twenty years ago, motivated by learning algorithms that are not
ERM , such as k-Nearest Neighbor. While trying to develop a theory that can deal with the classical and the
modern regime, it seems natural to abandon the idea of the hypothesis space as the object of interest and
focus instead on properties of supervised learning algorithms, which are maps from data sets to hypothesis
functions. One can ask: what property must the learning map L have for good generalization error? The answer for
a fixed hypothesis space is that CVloo stability is necessary and sufficient for generalization and consistency
of ERM2.
Building upon this observation, we conjecture that CVloo stability may be used to develop a unifying theory
encompassing both the classical and the modern regime for ERM. In the classical regime generalization can
take place provided βCV → 0 when n → ∞; for ERM consistency follows from generalization. In the modern
interpolatory regime, the generalization gap given by ES [I[fS ] − IS [fS ]] does not necessarily decrease to 0 as
n → ∞ since IS [fS ] = 0, while we can have I[fS ] > 0 in general. However, for interpolating regressors, βCV

becomes a bound on the expected error. Thus the key claim of this unified approach is that minimizing βCV

minimizes the expected generalization gap and in particular minimizes the expected error in the modern regime.
While this is satisfying conceptually, it is also important to spell out the implications of minimizing βCV for
ERM 3. A natural answer is that minimizing βCV in ERM may be equivalent to selecting the minimum norm
solution. For the case of kernel regressors we show next that the minimum norm ERM interpolator indeed
minimizes CVloo stability. It should be emphasized that this is an upper bound and we cannot expect the
minimum norm solution to always yield the minimum expected error. In particular, better solution can be
found when prior information is available (see Oravkin & Rebeschini (2021)). In addition, it remains an
open question whether similar results hold for classifiers such as deep networks4.

4 CVloo Stability of Kernel Least Squares
In this section we analyze the expected CVloo stability of solutions to the kernel least squares problem, and
obtain a corresponding upper bound on their stability. We show that the upper bound on the expected CVloo

stability is governed by the norm of the solutions in the case of interpolating solutions, and hence is the
smallest for the minimum norm interpolating solution (1) .
As outlined in section 2.1, we consider a kernel least squares problem on a dataset S = {(xi, yi)}n

i=1 ⊆
(Rd ×R)n. We use the linear parameterization in the RKHS f(x) = ⟨w, Φ(x)⟩H, and collect the RKHS
features of the data Φ(xi) into the rows of a linear operator X : H → Rn. We recall that all interpolating
solutions are of the form ŵS = X†y + (IH − X†X)v for some v ∈ H. Since we are interested in CVloo stability,
we consider the same kernel least squares problem on the leave one out dataset S−i. We replace the ith row
of X with 0H to obtain the corresponding data operator X−i : H → Rn for the leave one out dataset. All
solutions on the leave one out dataset S−i can be written as ŵS−i

= (X−i)†y−i + (IH − X†
−iX−i)v−i for some

v−i ∈ H. We note that when v = 0H and v−i = 0H, we obtain the minimum norm interpolating solutions
on the datasets S and S−i.
Theorem 7 (Main Theorem) Consider the kernel least squares problem where the inputs x ∈ H and the outputs y
are bounded, that is there exist κ, M > 0 such that

||x||2H ≤ κ, |y| ≤ M, (5)
2LOO stability (see Poggio et al. (2004)) together with CVloo stability of the algorithm, both going to zero for n → ∞ is sufficient for

generalization for any supervised algorithm, including k-nearest neighbor and kernel machines.
3An argument may be made that while overparametrization makes sense for large but finite amounts of data, it should disappear for

realistic learning machines as n → ∞. If this does not happen the empirical loss will never converge to the expected loss, which seems a
natural requirement, especially in a quasi-online setting.

4The results of course hold for deep RELU networks in the NTK regime, since they are then equivalent to kernel machines. Our
results provide context for NTK analyses similar to that presented in Arora et al. (2019)
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almost surely. Then for any interpolating solutions f̂S−i , f̂S ,

ES [V (f̂S−i , zi) − V (f̂S , zi)] ≤ C1ES [βCV ] + C2ES

[
β2

CV

] (6)

Where βCV = ||X†||op||y|| + 2||v − v−i|| + ||v−i||, and C1, C2 are absolute constants that do not depend on either d
or n. This bound is minimized when v = v−i = 0H, which corresponds to the minimum norm interpolating solutions
f†

S , f†
S−i

. For the minimum norm solutions we have βmin
CV = ||X†||op||y||.

In the above theorem ||X†||op refers to the operator norm of the pseudoinverse of the data operator X, ||y||
refers to the (Euclidean) norm of y ∈ Rn.
We can combine the above result with Lemma 5 to obtain the following bound on excess risk for minimum
norm interpolating solutions to the kernel least squares problem:

Corollary 8 The excess risk of the minimum norm interpolating kernel least squares solution can be bounded as:

ES

[
I[f†

S−i
] − inf

f∈H
I[f ]

]
≤ C1ES

[
||X†||op||y||

]
+ C2ES

[
||X†||2op||y||2

]
We provide the proof of Theorem 7 in section 6. In the next section we first offer some discussion of our
results on stability, and put our results in the context of other recent results on interpolation in linear and
kernel least squares problems.

5 Discussion and Related Work
In the previous section we obtained bounds on the CVloo stability of kernel least squares solutions and in
particular of interpolating solutions. We established a bound on average stability for kernel least squares
solutions, and show that this bound is minimized when the minimum norm ERM solution is selected. One
of our key findings is the relationship between minimizing the norm of the ERM solution and minimizing a
bound on stability. In this section we discuss our bound under different regimes of the sample size n and the
dimensionality of the data d.
For the kernel least squares problem, interpolation occurs under mild conditions for different kernels. For
instance, if the input data are all distinct, the inverse of the kernel matrix exists and for positive definite
radial kernels interpolation is expected. For other kernels, such as the linear kernel, d ≥ n is needed for
interpolation.

Asymptotic analysis: While our bounds hold for any finite d and n, it is worth understanding how they
evolve under different regimes of n and d. For n → ∞ (and d fixed), the smallest singular value of the kernel
matrix K = [K(xi, xj)] typically decreases with n. This means our bounds diverge and stability is lost. The
classical approach here is to use regularized ERM (see Remark 3) corresponding to

min
f∈H

1
n

n∑
i=1

(f(xi) − yi)2 + λ∥f∥2
K , (7)

which gives the following set of equations for c (with λ ≥ 0)

(K + nλI)c = y. (8)

Regularized ERM has a strong stability guarantee with a uniform stability bound (defined in appendix A.3)
β = O

( 1
λn

) which turns out to be inversely proportional to the regularization parameter λ and the sample
size n (Bousquet & Elisseeff, 2001). Here the limit n → ∞ implies asymptotic convergence to a zero stability
gap.

6



In a setting that is common in statistics we can also consider how our bounds evolve as both the n and d
go to infinity, but the ratio n

d → γ remains finite as n, d → ∞. In this setting, it is possible to use results
from random matrix theory (Marchenko & Pastur, 1967) to sketch the asymptotic limits of our bound for
linear kernels under distributional assumptions on the data. Since

∥∥X†
∥∥

op
= 1

σmin(X) , we can compute the
asymptotic limit of our bound as

∥∥X†
∥∥2

op
∥y∥2 = n

d(1−√
γ)2 = γ

(1−√
γ)2 . Notice that the bound does not go

to zero for n → ∞ because in general the expected error cannot vanish (unless the classification labels are
deterministic). Since the kernel matrix K is related to the data operator X as K = X⊤X, we have that
σmin(K) = σmin(X)2, and our bound can be written in terms of the minimum singular value of the kernel
matrix rather than data operator.
Interestingly, properties analogous to the Marchenko-Pastur limit hold for more general kernels. Consider
random matrices whose entries are K(x⊤

i xj) with i.i.d. vectors xi in Rd with mean zero and unit variance.
Assuming that the distribution of xi’s is sufficiently nice and f is sufficiently smooth, El Karoui (2010) showed
that in the Marchenko–Pastur limit, the spectral distributions of kernel dot-product matrices Kij = f( 1

d x⊤
i xj)

behave as if f is linear. In fact, El Karoui showed that undermild conditions, the kernelmatrix is asymptotically
equivalent to a linear combination of the linear kernel matrix, the all-1’s matrix, and the identity, and hence
the limiting spectrum is Marcenko–Pastur 5.
However, we note that our results do not predict a double descent curve for kernels that are not linear dot
product kernels (Poggio et al., 2019). We discuss this observation in more detail in Section 7.

RelatedWork: Recently, there has been a surge of interest in studying linear and kernel least squares models,
since classical results focus on situations where constraints or penalties that prevent interpolation are added
to the empirical risk. For example, high dimensional linear regression is considered in Mei & Montanari
(2019); Hastie et al. (2019) from the perspective of asymptotic statistics. A non asymptotic approach is
considered instead in Bartlett et al. (2019); Liang et al. (2019); Rakhlin & Zhai (2018) and Liang et al. (2020).
In particular, the results in Bartlett et al. (2019) are the first to obtain convergence when the number of
dimensions/parameters is fixed.
While these papers study upper and lower bounds on the risk of interpolating solutions to the linear and
kernel least squares problem, ours are the first to be derived using stability arguments. While it might be
possible to obtain tighter excess risk bounds through careful analysis of the minimum norm interpolant, our
simple approach helps us establish a link between stability in a statistical and numerical sense. Of course,
our result is in terms of an upper bound and since lower bounds do not yet exist and seem difficult to obtain,
it is reasonable to be skeptical of its quantitative values. More relevant in our opinion is the qualitative
statement that minimizing the norm of an interpolating solution has the effect of making its stability gap
smaller and thus of minimizing its expected error. We also see this reflected in numerical simulations in
section 7. Concurrent to our work, Liang & Recht (2021) study the classification problem using kernels
and obtain a mistake bound for the minimum norm interpolating classifier. However they do not make the
connection to CVloo stability.
Finally, we can compare our results with observations made in Poggio et al. (2019) on the condition number
of random kernel matrices. The condition number of the empirical kernel matrix is known to control the
numerical stability of the solution to a kernel least squares problem. Our results show that the statistical
stability is also controlled by the minimum singular value of the kernel matrix (which is closely related to
the condition number), providing a natural link between numerical and statistical stability.

5Remark 5.1 of Liang et al. (2020) observes that since the data is usually centered (
∑n

i=1 xi = 0), the spectrum of the the kernel
matrix is close to the spectrum of the linear kernel.
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6 Proof of Theorem 7
6.1 Key lemmas
In order to prove Theorem 7 we make use of the following lemmas to bound the CVloo stability using the
norms and the difference of the solutions.

Lemma 9 Under assumption (5), for all i = 1. . . . , n, it holds that

ES [V (f̂S−i
, zi) − V (f̂S , zi)] ≤ ES

[(
2M + κ

(∥∥∥f̂S

∥∥∥
H

+
∥∥∥f̂S−i

∥∥∥
H

))
× κ

∥∥∥f̂S − f̂S−i

∥∥∥
H

]
Proof We begin, recalling that the square loss is locally Lipschitz, that is for all y, a, a′ ∈ R, with

|(y − a)2 − (y − a′)2| ≤ (2|y| + |a| + |a′|))|a − a′|.

If we apply this result to f, f ′ in a RKHS H,

|(y − f(x))2 − (y − f ′(x))2| ≤ κ(2M + κ (∥f∥H + ∥f ′∥H)) ∥f − f ′∥H .

using the basic properties of a RKHS that for all f ∈ H

|f(x)| ≤ ∥f∥∞ ≤ κ ∥f∥H (9)

In particular, we can plug f̂S−i
and f̂S into the above inequality, and the almost positivity of ERM (Mukherjee

et al., 2006) will allow us to drop the absolute value on the left hand side. Finally the desired result follows
by taking the expectation over S.

Now that we have bounded the CVloo stability using the norms and the difference of the solutions, we can
find a bound on the difference between the solutions to the kernel least squares problem. This is our main
stability estimate.

Lemma 10 Let f̂S , f̂S−i be any interpolating kernel least squares solutions on the full and leave one out datasets
(as defined at the top of this section), then

∥∥∥f̂S − f̂S−i

∥∥∥
H

≤ ||X†||op||y|| + 2||v − v−i|| + ||v−i||. This bound is

minimized when v = v−i = 0H, which corresponds to the minimum norm interpolating solutions f†
S , f†

S−i
.

Also, ∥∥∥f†
S − f†

S−i

∥∥∥ ≤
∥∥X†∥∥

op
∥y∥ (10)

Remark 11 (Zero training loss) In Lemma 9 we use the locally Lipschitz property of the squared loss function to
bound the leave one out stability in terms of the difference between the norms of the solutions. Under interpolating con-
ditions, if we set the term V (f̂S , zi) = 0, the leave one out stability reduces to ES

[
V (f̂S−i

, zi) − V (f̂S , zi)
]

=

ES

[
V (f̂S−i

, zi)
]

= ES [(f̂S−i
(xi) − yi)2] = ES [(f̂S−i

(xi) − f̂S(xi))2] = ES [⟨f̂S−i
(·) − f̂S(·), Kxi

(·)⟩2] ≤

ES

[
||f̂S − f̂S−i

||2H × κ2
]
. We can plug in the bound from Lemma 10 to obtain similar qualitative and quantita-

tive (up to constant factors) results as in Theorem 7.

Since the minimum norm interpolating solutions minimize both
∥∥∥f̂S

∥∥∥
H

+
∥∥∥f̂S−i

∥∥∥
H

and
∥∥∥f̂S − f̂S−i

∥∥∥
H

(from
lemmas 9, 10), we can put them together to prove theorem 7. In the following section we provide the proof
of Lemma 10.
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6.2 Proof of Lemma 10
We have n samples in the training set for a kernel least squares problem, {(xi, yi)}n

i=1. We consider the linear
operator X = [Φ(x1)⊤; Φ(x2)⊤; . . . Φ(xn)⊤] from H to Rn and vector of labels y = [y1y2 . . . yn]⊤ ∈ Rn. For
any w ∈ H, the operator evaluaties to Xw ∈ Rn, the ith entry of which is given by ⟨w, Φ(xi)⟩H. Then any
ERM solution wS satisfies the linear equation

XŵS = y (11)

Any solution can be written as:
ŵS = X†y + (IH − X†X)v (12)

If we consider the leave one out training set S−i we can find the minimum norm ERM solution for X−i =
[Φ(x1)⊤; . . . 0⊤

H; . . . ; Φ(xn)⊤] and y−i = [y1 . . . 0 . . . yn]⊤ as

ŵS−i
= (X−i)†y−i + (IH − X†

−iX−i)v−i (13)

We can write X−i as:
X−i = X + ab⊤ (14)

where b ∈ H is a vector representing the additive change to the ith row, i.e, b = −Φ(xi), and a = ei ∈ Rn is
the i−th element of the canonical basis in Rn (all the coefficients are zero but the i−th which is one). Thus
ab⊤ is a linear operator from H to Rn that maps vectors in H to scaled versions of a.
We also have y−i = y − yia. Now per Lemma 9 we are interested in bounding the quantity ||f̂S−i

− f̂S ||H =
||ŵS−i

− ŵS ||H. This simplifies to:

||ŵS−i
− ŵS ||H = ||X†

−iy−i − X†y + v−i − v + X†Xv − X†
−iX−iv−i||H

= ||(X−i)†(y − y−ia) − X†y + v−i − v + X†Xv − X†
−iX−iv−i||H

= ||(X†
−i − X†)y + y−iX†

−ia + v−i − v + X†Xv − X†
−iX−iv−i||

= ||(X†
−i − X†)y + v−i − v + X†Xv − X†

−iX−iv−i||

= ||(X†
−i − X†)y + (IH − X†X)(v−i − v) + (X†X − X†

−iX−i)v−i||

(15)

In the above equationwemake use of the fact that X†
−ia = 0H. We use an old formula (Meyer, 1973; Baksalary

et al., 2003) to compute (X−i)† from X†. We use the development of pseudo-inverses of perturbed matrices
in Meyer (1973). Since none of the theorems depend on the finite dimensionality of H, we can use those
results for linear operators. We see that b = −Φ(xi) is a vector in the range of X⊤ and a is in the range of X
(provided X has rank n), with β = 1 + b⊤X†a = 1 − Φ(xi)⊤X†a = 0. This means we can use Theorem 6 in
Meyer (1973) (equivalent to formula 2.1 in Baksalary et al. (2003)) to obtain the expression for X†

−i

X†
−i = X† − kk†X† − X†h†h + (k†X†h†)kh (16)

where k = X†a, and h = b⊤X†, and u† = u⊤

||u||2 for any non-zero vector u.

X†
−i − X† = (k†X†h†)kh − kk†X† − X†h†h

= (k†X†a)ka⊤ − kk†X† − X†aa⊤

= (k†k)ka⊤ − ka⊤ − kk†X†

=⇒ ||X†
−i − X†||op = ||kk†X†||op

≤ ||X†||op

(17)
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The above set of inequalities follows from the fact that the operator norm of a rank 1 matrix is given by
||uv⊤||op = ||u|| × ||v||, and by noticing that k = −b.
Also, from List 2 of Baksalary et al. (2003) we have that X†

−iX−i = X†X − kk†.
Plugging in these calculations into equation 15 we get:

||ŵS−i
− ŵS || = ||(X†

−i − X†)y + (IH − X†X)(v−i − v) − (X†X − X†
−iX−i)v−i||

≤ ||X†||op||y|| + ||IH − X†X||op||v − v−i|| + ||kk†||op||v−i||
≤ ||X†||op||y|| + 2||v − v−i|| + ||v−i||

(18)

We see that the right hand side is minimized when v = v−i = 0H. This concludes the proof of Lemma 10.

Remark 12 (Stability of the minimum norm solution) We can perform a more careful analysis of the stability of
the minimum norm solution by putting together equations (15) and (17), with v = v−i = 0H to obtain the following
bound: ∥∥∥w†

S−i
− w†

S

∥∥∥ =
∥∥−kk†X†y

∥∥ ≤
∥∥∥w†

S

∥∥∥ (19)

Putting this together with Lemma 9 and Lemma 5 we can see that the CVloo stability – and hence excess risk of the
minimum norm solution to the kernel least squares problem – is bounded by the norm of the solution.

7 Simulations
In this section we perform experiments to provide empirical evidence for our theoretical results. We first
verify that the minimum norm interpolating solution maximizes stability among all interpolating solutions.
Subsequently we show that the test error inversely correlates with the minimum singular value of the kernel
matrix, and we finally verify that the norm of the minimum norm interpolating solution governs its test error.
We will now see those experiments one by one.

Stability and norm of the solution: In order to illustrate that the minimum norm interpolating solution is
the best performing interpolating solution we run a simple experiment on a linear regression problem. We
synthetically generate data from a linear model y = Xw, where X ∈ Rn×d is i.i.d N (0, 1). The dimension of
the data is d = 1000 and there are n = 200 samples in the training dataset. We use a held out test dataset of
100 samples to measure the generalization performance. We compute interpolating solutions as described
at the beginning of this section, ŵ = X†y + (I − X†X)v, using v’s of different norms to compare the test
error and CVloo stability. The results (averaged over 100 trials) are shown in Figure 1. In Figure 1a we can
see that the training loss is 0 for all interpolating solutions, but the test MSE increases as ||v|| increases, with
the minimum norm solution w† = X†y having the best performance. We also observe in Figure 1b that the
CVloo stability, computed using the expression in (3), also follows a similar trend. From both plots in Figure
1 we can see that the minimum norm interpolating solution has the best stability as well as the best test error,
as suggested by Theorem 7.

Test Error and 1
σmin(K) : Our results also indicate that the bound on the CVloo stability (and hence the test

error) of the minimum norm interpolating solution depends on the norm of the (pseudo) inverse of the
empirical kernel matrix. In order to verify this using simulations, we consider a regression problem in which
we learned the function f(x) = exp(−2 ∥x∥) using kernel least squares. We generated samples xi ∈ R20

and learned f using interpolating kernel "ridgeless" regression with a polynomial kernel of degree 2 as
well as a radial basis function (RBF) kernel. The training dataset was generated by sampling X ∈ Rn×d

(d = 20, n = 200) i.i.d. from N (0, 1), and a held out test dataset of 100 samples was also generated in a similar
fashion. The results of this simulation can be seen in Figure 2. In order to obtain RBF and polynomial kernel
matrices with different singular values, we varied the size of the training dataset from 10 to 200 (Figure 2a,
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2b). In both cases we observe that the log test MSE of the minimum norm interpolating solution is correlated
with the log of the norm of the pseudoinverse of the empirical kernel matrix. This confirms our observation
that the numerical stability and statistical stability of a kernel least squares problem are related through the
smallest singular value of the kernel matrix.
We note that our results do not predict a double descent curve in the smallest singular value for kernels that
are not linear dot product kernels (Poggio et al., 2019). In the case of linear dot product kernels, since the
spectra of X⊤X and XX⊤ are the same, one can expect a double descent curve for the smallest singular
value of the kernel matrix. This is not true for more general kernels. The expected loss should therefore also
not show a double descent, except in the case of the linear kernel. This is also what we find empirically (see
Figures 1a and 2a).

Test Error and norm of the solution: In order to show that the norm of the minimum norm solution to the
kernel least squares problem also governs the stability and hence test error (remark 12), we performed an
experiment on binary classification in which the fraction of random labels assigned was varied in order to
increase the noise level of the problem. We generated data from two gaussian distributions with different
means, ie from N (±3 × 120, I20), and trained an RBF kernel on 200 training samples and observed the test
error on a held out set of 100 samples. As we can see in Figure 3, the norm of the interpolating solution (red)
and the test mean squared error (blue) both increase as the label noise increases. An intuitive explanation of
the reason the norm grows is that the pseudoinverse of the data operator X† is effectively a high-pass filter
that amplifies high-frequencies (more noise) in y, and increases the norm of the minimum norm solution. We
also expect the test error to grow as the label noise in the problem increases, since the minimum achievable
error is atleast the label noise. Our results on the stability and hence test error of the minimum norm solution
to the kernel least squares problem also capture this phenomenon.

8 Conclusions

In summary, minimizing a bound on cross validation stability minimizes the expected error in both the
classical and the modern regime of ERM. In the classical regime (d < n, d large but fixed), CVloo stability
implies generalization and consistency (for n → ∞). In the modern regime (d > n), as described in this
paper, optimizing CVloo stability selects the minimum norm interpolating solution to the kernel least squares
problem which has the best generalization performance.
The main contribution of this paper is in characterizing the stability of (possibly interpolating) solutions to
the kernel least squares problem, in particular deriving excess risk bounds via a stability argument. In the
process, we show that among all the interpolating solutions, the one with minimum norm also minimizes a
bound on stability. Since the excess risk bounds of the minimum norm interpolating solution depend on the
minimum singular value of the kernel matrix which is closely related to the condition number, we establish
here a link between numerical and statistical stability. This also holds for solutions computed by gradient
descent, since gradient descent converges to minimum norm solutions in the case of “linear” kernel methods.
Our approach is simple and combines basic stability results with matrix inequalities. It is our hope that
similar results may be established for deep networks, in particular with respect to minimum norm solutions
being the most stable.
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A Excess Risk, Generalization, and Stability
We use the same notation as introduced in Section 2 for the various quantities considered in this section.
That is in the supervised learning setup V (f, z) is the loss incurred by hypothesis f on the sample z, and
I[f ] = Ez[V (f, z)] is the expected error of hypothesis f . Since we are interested in different forms of stability,
wewill consider learning problems over the original training setS = {z1, z2, . . . , zn}, the leave one out training
set S−i = {z1, . . . , zi−1, zi+1, . . . , zn}, and the replace one training set (S−i, z) = {z1, . . . , zi−1, zi+1, . . . , zn, z}

A.1 Replace one and leave one out algorithmic stability
Similar to the definition of expected CVloo stability in equation (3) of the main paper, we say an algorithm is
cross validation replace one stable (in expectation), denoted as CVro, if there exists βro > 0 such that

ES,z[V (fS , z) − V (f(S−i,z), z)] ≤ βro.

We can strengthen the above stability definition by introducing the notion of replace one algorithmic stability
(in expectation) Bousquet & Elisseeff (2001). There exists αro > such that for all i = 1, . . . , n,

ES,z[
∥∥fS − f(S−i,z)

∥∥
∞] ≤ αro.

We make two observations:
First, if the loss is Lipschitz, that is if there exists CV > 0 such that for all f, f ′ ∈ H

∥V (f, z) − V (f ′, z)∥ ≤ CV ∥f − f ′∥ ,

then replace one algorithmic stability implies CVro stability with βro = CV αro. Moreover, the same result
holds if the loss is locally Lipschitz and there exists R > 0, such that ∥fS∥∞ ≤ R almost surely. In this latter
case the Lipschitz constant will depend on R. Later, we illustrate this situation for the square loss.
Second, we have for all i = 1, . . . , n, S and z,

ES,z[
∥∥fS − f(S−i,z)

∥∥
∞] ≤ ES,z[

∥∥fS − fS−i

∥∥
∞] + ES,z[

∥∥f(S−i,z) − fS−i

∥∥
∞].

This observation motivates the notion of leave one out algorithmic stability (in expectation) Bousquet &
Elisseeff (2001)]

ES,z[
∥∥fS − fS−i

∥∥
∞] ≤ αloo.

Clearly, leave one out algorithmic stability implies replace one algorithmic stability with αro = 2αloo and it
implies also CVro stability with βro = 2CV αloo.

A.2 Excess Risk and CVloo, CVro Stability
We recall the statement of Lemma 5 in section 3 that bounds the excess risk using the CVloo stability of a
solution.

Lemma 13 (Excess Risk & CVloo Stability) For all i = 1, . . . , n,

ES [I[fS−i
] − inf

f∈H
I[f ]] ≤ ES [V (fS−i

, zi) − V (fS , zi)]. (20)

In this section, two properties of ERM are useful, namely symmetry, and a form of unbiasedeness.

Symmetry. A key property of ERM is that it is symmetric with respect to the data set S, meaning that it
does not depend on the order of the data in S.
A second property relates the expected ERM with the minimum of expected risk.
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ERM Bias. The following inequality holds.
E[[IS [fS ]] − min

f∈H
I[f ] ≤ 0. (21)

To see this, note that
IS [fS ] ≤ IS [f ]

for all f ∈ H by definition of ERM, so that taking the expectation of both sides
ES [IS [fS ]] ≤ ES [IS [f ]] = I[f ]

for all f ∈ H. This implies
ES [IS [fS ]] ≤ min

f∈H
I[f ]

and hence (21) holds.
Remark 14 Note that the same argument gives more generally that

E[ inf
f∈H

[IS [f ]] − inf
f∈H

I[f ] ≤ 0. (22)

Given the above premise, the proof of Lemma 5 is simple.
Proof [of Lemma 5] Adding and subtracting ES [IS [fS ]] from the expected excess risk we have that

ES [I[fS−i ] − min
f∈H

I[f ]] = ES [I[fS−i ] − IS [fS ] + IS [fS ] − min
f∈H

I[f ]], (23)

and since ES [IS [fS ]] − minf∈H I[f ]] is less or equal than zero, see (22), then
ES [I[fS−i ] − min

f∈H
I[f ]] ≤ ES [I[fS−i ] − IS [fS ]]. (24)

Moreover, for all i = 1, . . . , n

ES [I[fS−i ]] = ES [EziV (fS−i , zi)] = ES [V (fS−i , zi)]

and
ES [IS [fS ]] = 1

n

n∑
i=1

ES [V (fS , zi)] = ES [V (fS , zi)].

Plugging these last two expressions in (24) and in (23) leads to (4).

We can prove a similar result relating excess risk with CVro stability.
Lemma 15 (Excess Risk & CVro Stability) Given the above definitions, the following inequality holds for all
i = 1, . . . , n,

ES [I[fS ] − inf
f∈H

I[f ]] ≤ ES [I[fS ] − IS [fS ]] = ES,z[V (fS , z) − V (f(S−i,z), z)]. (25)

Proof The first inequality is clear from adding and subtracting IS [fS ] from the expected risk I[fS ] we have
that

ES [I[fS ] − min
f∈H

I[f ]] = ES [I[fS ] − IS [fS ] + IS [fS ] − min
f∈H

I[f ]],

and recalling (22). The main step in the proof is showing that for all i = 1, . . . , n,
E[IS [fS ]] = E[V (f(S−i,z), z)] (26)

to be compared with the trivial equality, E[IS [fS ] = E[V (fS , zi)]. To prove Equation (26), we have for all
i = 1, . . . , n,

ES [IS [fS ]] = ES,z[ 1
n

n∑
i=1

V (fS , zi)] = 1
n

n∑
i=1

ES,z[V (f(S−i,z), z)] = ES,z[V (f(S−i,z), z)]

wherewe used the fact that by the symmetry of the algorithmES,z[V (f(S−i,z), z)] is the same for all i = 1, . . . , n.
The proof is concluded noting that ES [I[fS ]] = ES,z[V (fS , z)].
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A.3 Discussion on Stability and Generalization
Below we discuss some more aspects of stability and its connection to other quantities in statistical learning
theory.

Remark 16 (CVloo stability in expectation and in probability) In Mukherjee et al. (2006), CVloo stability is
defined in probability, that is there exists βP

CV > 0, 0 < δP
CV ≤ 1 such that

PS{|V (fS−i , zi) − V (fS , zi)| ≥ βP
CV } ≤ δP

CV .

Note that the absolute value is not needed for ERM since almost positivity holds Mukherjee et al. (2006), that is
V (fS−i , zi) − V (fS , zi) > 0. Then CVloo stability in probability and in expectation are clearly related and indeed
equivalent for bounded loss functions. CVloo stability in expectation (3) is what we study in the following sections.

Remark 17 (Connection to uniform stability and other notions of stability) Uniform stability, introduced by
Bousquet & Elisseeff (2001), corresponds in our notation to the assumption that there exists βu > 0 such that for all
i = 1, . . . , n, supz∈Z |V (fS−i

, z) − V (fS , z)| ≤ βu. Clearly this is a strong notion implying most other definitions of
stability. We note that there are number of different notions of stability. We refer the interested reader to Kutin & Niyogi
(2002) , Mukherjee et al. (2006).

Remark 18 (CVloo Stability & Learnability) A natural question is to which extent suitable notions of stability
are not only sufficient but also necessary for controlling the excess risk of ERM. Classically, the latter is characterized in
terms of a uniform version of the law of large numbers, which itself can be characterized in terms of suitable complexity
measures of the hypothesis class. Uniform stability is too strong to characterize consistency while CVloo stability
turns out to provide a suitably weak definition as shown in Mukherjee et al. (2006), see also Kutin & Niyogi (2002),
Mukherjee et al. (2006). Indeed, a main result in Mukherjee et al. (2006) shows that CVloo stability is equivalent to
consistency of ERM:

Theorem 19 Mukherjee et al. (2006) For ERM and bounded loss functions, CVloo stability in probability with βP
CV

converging to zero for n → ∞ is equivalent to consistency and generalization of ERM.

Remark 20 (CVloo stability & in-sample/out-of-sample error) Let (S, z) = {z1, . . . , zn, z}, (z is a data point
drawn according to the same distribution) and the corresponding ERM solution f(S,z), then (4) can be equivalently
written as,

ES [I[fS ] − inf
f∈F

I[f ]] ≤ ES,z[V (fS , z) − V (f(S,z), z)].

Thus CVloo stability measures how much the loss changes when we test on a point that is present in the training set and
absent from it. In this view, it can be seen as an average measure of the difference between in-sample and out-of-sample
error.

Remark 21 (CVloo stability and generalization) A common error measure is the (expected) generalization gap
ES [I[fS ] − IS [fS ]]. For non-ERM algorithms, CVloo stability by itself not sufficient to control this term, and further
conditions are needed Mukherjee et al. (2006), since

ES [I[fS ] − IS [fS ]] = ES [I[fS ] − IS [fS−i
]] + ES [IS [fS−i

] − IS [fS ]].

The second term becomes for all i = 1, . . . , n,

ES [IS [fS−i ] − IS [fS ]] = 1
n

n∑
i=1

ES [V (fS−i , zi) − V (fS , zi)] = ES [V (fS−i , zi) − V (fS , zi)]

and hence is controlled by CV stability. The first term is called expected leave one out error in Mukherjee et al. (2006)
and is controlled in ERM as n → ∞, see Theorem 19 above.
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B Generalized Inverse of a Perturbed Operator
In this section we consider a linear operator perturbed by a rank-one operator, ie. M = A + cd⊤, where
M, A : U → V , d ∈ U , c ∈ V . Here U, V are inner product vector spaces over the field R.

Theorem 22 (Theorem 6 of Meyer (1973)) Let A† be the pseudoinverse of A, and define k = A†c, h = d⊤A†.
Let us consider the case where c ∈ range(A), d ∈ range(A⊤), and β = 1 + d⊤A†c = 0. Then the pseudoinverse M†

of the perturbed operator is given by:

M† = A† − kk†A† − A†h†h + (k†A†h†)kh (27)

Proof
We will reproduce the proof of Theorem 6 in Meyer (1973) here, with the only difference being that instead
of matrices, we have linear operators.
Consider the operatorsAA†−h†h, A†A−kk†. These are both orthogonal projectors, since they are symmetric
and idempotent. This can be checked quite easily, using the facts that AA†h† = h†, hAA† = h, A†Ak = k,
and k†A†A = k†. Both of these operators have their rank equal to rank(A) − 1. This is also the case for the
operator M, from Lemma 1 of Meyer (1973).
Hence we have rank(M) = rank(AA† − h†h) = rank(A†A − kk†).
With the facts that AA†c = c, hc = −1, and hA = d⊤, we have that

(AA† − h†h)M = M

This means that range(M) ⊂ range(AA† − h†h).
Likewise, with the facts that d⊤A†A = d⊤, d⊤k = −1, and Ak = c, we have that

M(A†A − kk†) = M

and hence, range(M⊤) ⊂ range(A†A − kk†). putting these together, we have that:

MM† = AA† − h†h
M†M = A†A − kk† (28)

If X is the right hand side of 27, we can use hAA† = h and the above equation to obtain XMM† = X. We
can also use the above equation, k†A†A = k†, hA = d⊤, and hc = −1 to obtain XM = M†M. Since this
means that X satisfies the two conditions of Lemma 2 in Meyer (1973), we have shown that M† = X.

Lemma 23 (Lemma 1 of Meyer (1973)) Let A† be the pseudoinverse of A, and define u = (I − AA†)c, v =
d⊤(I − A†A), and β = 1 + d⊤A†c = 0. Then the rank of the perturbed operator M = A + cd⊤ is given by:

rank(A + cd⊤) = rank
[
A u
v −β

]
− 1

Lemma 24 (Lemma 2 of Meyer (1973)) If X and M are operators such that XMM† = X and M†M = XM,
then X = M†.
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