Sparse Coding and Autoencoders

Akshay Rangamani*!, Anirbit Mukherjee!?, Amitabh Basu *?, Tejaswini Ganapathy %3,
Ashish Arora !, Sang (Peter) Chin 456, and Trac D. Tran **!

'ECE Department, Johns Hopkins University
2 AMS Department, Johns Hopkins University
3Salesforce, San Francisco Bay Area
“Department of Computer Science , Boston University
>Center for Brains, Minds and Machines (CBMM), Dept. of Brain and Cognitive Sciences
, MIT
Center of Mathematical Sciences and Applications (CMSA) , Harvard University

*Equal Contribution, rangamani . akshay@jhu.edu
TEqual Contribution, amukhe14@jhu. edu
fbasu.amitabh@jhu.edu
§‘cganapathi@salesforce .com
9 aarora8@jhu.edu
I spchin@cs.bu.edu

**trac@jhu.edu

rangamani.akshay@jhu.edu
amukhe14@jhu.edu
basu.amitabh@jhu.edu
tganapathi@salesforce.com
aarora8@jhu.edu
spchin@cs.bu.edu
trac@jhu.edu

Abstract

In Dictionary Learning one tries to recover incoherent matrices A* € R™ " (typically overcomplete and
whose columns are assumed to be normalized) and sparse vectors z* € R" with a small support of size
h? for some 0 < p < 1 while having access to observations y € R"™ where y = A*z". In this work we
undertake a rigorous analysis towards understanding whether gradient based neural training algorithms
can solve the dictionary learning problem. We focus on the Autoencoder architecture mapping R” — R"
with a single ReLU activation layer of size h.

Under very mild distributional assumptions on z*, we prove that the norm of the expected gradient of
the standard squared loss function is asymptotically (in sparse code dimension) negligible for all points
in a small neighborhood of A*. We support this via experiments using synthetic data. We also conduct
experiments to suggest that A* is a local minimum. Along the way we prove that a layer of ReLU gates can
be set up to automatically recover the support of the sparse codes. This property holds independent of the
loss function and we believe that it could be of independent interest.

1 Introduction

One of the fundamental themes in learning theory is to consider data being sampled from a generative
model and to provide efficient methods to recover the original model parameters exactly or with tight ap-
proximation guarantees. Classic examples include learning a mixture of gaussians [28]], certain graphical
models [5]], full rank square dictionaries [35} [13] and overcomplete dictionaries [2} (7, 18, 9] The problem
is usually distilled down to a non-convex optimization problem whose solution can be used to obtain the
model parameters. With these hard non-convex problems it has been difficult to find any universal view
as to why sometimes gradient descent gives very good and sometimes even exact recovery. In recent times
progress has been made towards achieving a geometric understanding of the landscape of such non-convex
optimization problems [[18]], [27], [42]]. The corresponding question of parameter recovery for neural nets
with one layer of activation has been solved in some special cases, 17, 4} 21} 134, 24} [36] [43]]. Almuost all of
these cases are in the supervised setting where it has also been assumed that the labels are being generated
from a net of the same architecture as is being trained. In contrast to these works we address an unsuper-
vised learning problem, and possibly more realistically, we do not tie the data generation model (sensing of
sparse vectors by an overcomplete incoherent dictionary) to the neural architecture being analyzed except
for assuming knowledge of a few parameters about the ground truth. In a related development, it has been
shown by two of the authors here in a previous work [I6]], that for two layer deep nets even the exact global
minima can be found deterministically in time polynomial in the data size. This work continues that line of
investigation to now make use of generative model assumptions to probe the power of a class of two layer
deep nets with ReLU activation.

Here we specialize to the generative model of dictionary learning/sparse coding where one receives samples of
vectors y € R™ that have been generated as y = A*z* where A* € R**" and z* € R". We typically assume
that the number of non-zero entries in z* to be no larger than some function of the dimension h and that A*
satisfies certain incoherence properties. The question now is to recover A* from samples of . There have
been renewed investigations into the hardness of this problem [38]] and many former results have recently
been reviewed in these lectures [[19]]. This question has been a cornerstone of learning theory ever since the
ground-breaking paper by Olshausen and Field ([31]]) (a recent review by the same authors can be found
in [32]]). Over the years many algorithms have been developed to solve this problem and a detailed com-
parison among these various approaches can be found in [[13]].

An autoencoder is a neural network that maps R” — R™ with a single hidden layer of Rectified Linear Unit
(ReLU) activations. These networks have been used extensively ([[11, 12,133, /40, 41]]) in the past for unsu-
pervised feature learning tasks, and have been found to be successful in generating discriminative features

[15]. A number of different autoencoder architectures and regularizers have been proposed which purport-
edly induce sparsity, at the hidden layer [[10}[16} 23} 29]]. There has also been some investigation into what
autoencoders learn about the data distribution [J3]].

Olshausen and Field had, as early as 1996, already made the connection between sparse coding and training
neural architectures and in today’s terminology this problem is very naturally reminiscent of the architec-
ture of an autoencoder [30/]. However, to the best of our knowledge, there has not been sufficient progress to
rigorously establish whether autoencoders can do sparse coding. In this work, we present our progress to-
wards bridging the above mentioned mathematical gap. To the best of our knowledge, there is no theoretical
evidence (even under the usual generative assumptions of sparse coding) that the stationary points of any
of the usual squared loss functions (with or without any of the usual regularizers) have any resemblance
to the original dictionary that is being sought to be learned. The main point of this paper is to rigorously
prove that for autoencoders with ReLU activation, the standard squared loss function has a neighbor-
hood around the dictionary A* where the norm of the expected gradient is very small (for large enough
sparse code dimension). Thus, all points in a neighborhood of A*, including A*, are all asymptotic
critical points of this standard squared loss. We supplement our theoretical result with experimental ev-
idence for it in Section [} which also strongly suggests that the standard squared loss function has a local
minimum in a neighborhood around A*. We believe that our results provide theoretical and experimental
evidence that the sparse coding problem can be tackled by training autoencoders.

1.1 A motivating experiment on MNIST using TensorFlow

We used TensorFlow [[1] to train two ReLU autoencoders mapping R — R84, These networks were
trained on a subset of the MNIST dataset of handwritten digits. One of the nets had a single hidden layer of
size 10000 and the other one had two hidden layers of size 5000 and 784 (and a fixed identity matrix giving
the output from the second layer of activations). In both the cases the weights of the encoder and decoder
were maintained as transposes of each other. We trained the autoencoders on the standard squared loss
function using RMSProp [37]. The training was done on 6000 images of the digits 6 and 7 from the MNIST
dataset. In the following panel we show four pairs (two for each net) of “reconstructed” image i.e output
of the trained net when its given as input the “actual” photograph as input.

Actual vs Reconstruction
) Actual 1 Reconstructed 1
Actual vs Reconstruction 0

Actual vs Reconstruction
Actual

Actual

050505 0 5 10 15 20 25 0 5 10 15 20 25

05101505
Reco‘nstructgd ‘ 0 Actual 2 0 Reconstructed 2

Reconstructed
VT 0

-

I 150525

0 5 10 15 20 25 0 5 10 15 20 25

1 layer Relu Autoencoder 2 layer Relu Autoencoder

In our opinion, the above figures add support to the belief that a single and a double layer ReLU activated
R™ — R™ network can learn an implicit high dimensional structure about the handwritten digits dataset.
In particular this demonstrates that though adding more hidden layers obviously helps enhance the recon-
struction ability, the single hidden layer autoencoder do hold within them significant power for unsuper-
vised learning of representations. Unfortunately analyzing the RMSProp update rule used in the above
experiment is currently beyond our analytic means. However, we take inspiration from these experiments
to devise a different mathematical set-up which is much more amenable to analysis taking us towards a
better understanding of the power of autoencoders.

2 Introducing the neural architecture and the distributional assump-
tions

For any n,h € {1,2,..}, an autoencoder is a fully connected R™ — R"™ neural network with a single hidden
layer of h activations. We focus on networks that use the Rectified Linear Unit (ReLU) activation which is
the function ReLU : R" — R" mapping # + (max{0,x;})"_,. In this case, the autoencoder can be seen as
computing the following function §(W, y, €) as follows,

r=ReLU (Wy —¢)
§g=wT'r (1)

Here y € R" is the input to the autoencoder, W € R"*" is the linear transformation implemented by the first
layer, r € R" is the output of the layer of activations, ¢ € R" is the bias vector and § € R" is the output of the
autoencoder. Note that we impose the condition that the second layer of weights is simply the transpose of
the first layer. We shall define the columns of W' (rows of W) as {W;}1_,.

Assumptions on the dictionary and the sparse code. We assume that our signal y is generated using
sparse linear combinations of atoms/vectors of an overcomplete dictionary, i.e., y = A*z*, where A* € R"* h
is a dictionary, and z* € (R=°)" is a non-negative sparse vector, with at most k = h? (for some 0 < p < 1)
non zero elements. The columns of the original dictionary A* (labeled as {A}}") are assumed to be nor-
malized and we parameterize its incoherence property as, max;, j= ; b [(Ax, A;) |< % = h~¢ for some £ > 0.
i#]

We assume that the sparse code z* is sampled from a distribution with the following properties. We fix a set
of possible supports of 2*, denoted by S C 2["/, where each element of S has at most & = h? elements. We
consider any arbitrary discrete probability distribution Ds on S such that the probability ¢; := Ps.s[i € 5]
is independent of ¢ € [h], and the probability ¢; := Pgesli, j € S] is independent of ¢, j € [h]. A special case
is when S is the set of all subsets of size k, and Ds is the uniform distribution on S. For every S € S there is
a distribution say Dg on (R=%)" which is supported on vectors whose support is contained in S and which
is uncorrelated for pairs of coordinates i, j € S. Further, we assume that the distributions Dg are such that
each coordinate ¢ is compactly supported over an interval [a(h), b(h)], where a(h) and b(h) are independent
of both i and S but will be functions of h. Moreover, m; (h) := E,«wpg[x}], and ma(h) := Ep-wpg[27?] are
assumed to be independent of both ¢ and S but allowed to depend on k. For ease of notation henceforth we
will keep the h dependence of these variables implicit and refer to them as a, b, m; and ms. All of our results
will hold in the special case when a, b, m1, m» are constants (no dependence on h).

3 Main Results
3.1 Recovery of the support of the sparse code by a layer of ReLUs

First we prove the following theorem which precisely quantifies the sense in which a layer of ReLU gates is
able to recover the support of the sparse code when the weight matrix of the deep net is close to the original

dictionary. We recall that the size of the support of the sparse vector z* is k = h? forsome 0 < p < 1. We also
recall the parameters a, b as defining the support of the marginal distribution of each coordinate of z* and
m; is the expected value of this marginal distribution (recall that none of these depend on the coordinate
or the actual support). These parameters will be referenced in the results below.

Theorem 3.1. Let each column of W' be within a d-ball of the corresponding column of A*, where § =
0] (h_p_”2) for some v > 0, such that p + v? < ¢ (where h=¢ is the coherence parameter). We further

assume that a = 2 (bh"’z). Let the bias of the hidden layer of the autoencoder, as defined in (1)) be e =
2ma k ((5 + %) Let r be the vector defined in (I]). Then r; # 0if i € supp(z*), and r; = 0if i ¢ supp(z*)

2hPm?

with probability at least 1 — exp (—W) (with respect to the distribution on z*).

2
Aslong as (Zii”;)lz is large, i.e., an increasing function of h, we can interpret this as saying that the probability
of the adverse event is small, and we have successfully achieved support recovery at the hidden layer in the
limit of large sparse code dimension.

3.2 Asymptotic Criticality of the Autoencoder around A*

In this work we analyze the following standard squared loss function for the autoencoder,

1. .
L=§|Iy—yll2 (2)

In the above we continue to use the variables as defined in equation|[l} If we consider a generative model
in which A* is a square, orthogonal matrix and «* is a non-negative vector (not necessarily sparse), it is
easily seen that the standard squared reconstruction error loss function for the autoencorder has a global
minimum at W = A*T. In our generative model, however, A* is an incoherent and overcomplete dictionary.

Theorem 3.2. (The Main Theorem) Assume that the hypotheses of Theorem hold, and p < min{3,v?}

(and hence ¢ > 2p). Further, assume the distribution parameters satisfy exp %) is superpolynomial
in h (which holds, for example, when m1,a,bare O(1)). Thenfori=1,... A,

o] |, = (=55

hi-p
Roadmap. We present the proof of the support recovery result, i.e., Theorem in Section [4] Sectio
gives the proof of our main result, Theorem The argument rests on two critical lemmas (Lemmas
and [5.2)), whose proofs appear in the Supplementary material. In Section [} we run simulations to verify
Theorem [3.2] We also run experiments that strongly suggest that the standard squared loss function has a
local minimum in a neighborhood around A*.

4 A Layer of ReLU Gates can Recover the Support of the Sparse Code
(Proof of Theorem [3.1))

Most sparse coding algorithms are based on an alternating minimization approach, where one iteratively
finds a sparse code based on the current estimate of the dictionary, and then uses the estimated sparse code
to update the dictionary. The analogue of the sparse coding step in an autoencoder, is the passing through
the hidden layer of activations of a certain affine transformation (W which behaves as the current estimate
of the dictionary) of the input vectors. We show that under certain stochastic assumptions, the hidden
layer of ReLU gates in an autoencoder recovers with high probability the support of the sparse vector which
corresponds to the present input.

Proof of Theorem From the model assumptions, we know that the dictionary A* is incoherent, and has
unit norm columns. So, [(A}, A%)|< % for alli # j, and ||A}||= 1 for all 7. This means that for i # j,

[(Wi, A7) = [(Ws = A7, AJ)[H[(AF, A7)

<IWi = Al 45 llo+ 7= < (5 +

M
N \/ﬁ) 3)

Otherwise fori = j,
<W%7Ar> = <WZ _A?7A:<>+<A:7A:<> = <WZ —A:,Aﬂ-l—l,
and thus,
1—6 < (W, A7) <144, (4)

where we use the fact that [(WW; — A, A})[< 6.
Let y = A*x* and let S be the support of x*. Then we define the input to the ReLU activation Q — € =
Wy —e€as
Qi = (Wi, At
JES
= (Wi, Az vies + »_ (Wi, A}
jeS\i
= (Wi, A} Lies + Zi.

First we try to get bounds on @; when i € supp(z*). From our assumptions on the distribution of z} we
have, 0 < ¢ < zf < band E[z]] = m; for all 7 in the support of z*. For i € supp(z*),

Qi = (W, A))x; + Z;
— Ql > (1—5)&+Z¢

where we use (). Using (B)), Z; has the following bounds:

—bk((ﬂ—;ﬁ) < 7, < bk <5+;ﬁ>

Plugging in the lower bound for Z; and the proposed value for the bias, we get

For QQ; — ¢ > 0, we need:

(b+2ma) (5+ 4) k

>
“ 5

- 1
Now plugging in the values for the various quantities, % =hfandk =hPand § = O (h_p_”2>, if we
havea = Q (bh”’Q), then @Q; — e > 0.
Now, for i ¢ supp(z*) we would like to analyze the following probability:
Pr(Q; — e > 0fi ¢ supp(z”)]
We first simplify the quantity Pr[Q; — ¢ > 0]i ¢ supp(z*)] as follows
Pr{Q; > eli ¢ supp(a”)] = Pr{Z, > d

=Pr [Z (Wi, Ay > e]

jeS\i

Using the Chernoff’s bound, we can obtain

Pr[Z; > €] < infe *E [H {e“W“A;)%*}}

T t>0
= jes\i
—infe~* J[E [et<WﬂA;>w;]
infe™]
jES\t
< infe *EF [et<6+;ﬁ)$;}

t>0

2 1\ a2 k
< infe—te (et(6+ \%)mlet(ﬂﬁg)(b)>

—t>0

where the second inequality follows from and the fact that ¢ and z are both nonnegative, and the third
inequality follows from Hoeffding’s Lemma. Next, we also have

Priz, > d < infe~ (H () m)+ (1 7) 0-o)®
>0

(e=k(5+Jymy)?

— ¢ 3UHED0-0?

Finally, since k = h? and € = 2mqk (6 + %), we have

2e—kmi(0+ 27\ _ 2hPm?
exp <_ hr (6 + ﬁ)%b —a)?) = exp (_()

5 Criticality of a neighborhood of A* (Proof of Theorem [3.2))

It turns out that the expectation of the full gradient of the loss function ({2)) is difficult to analyze directly.
Hence corresponding to the true gradient with respect to the i" —column of W we create a proxy, denoted

by V.L), by replacing in the expression for the true expectation V,L = E [{?TIL/} every occurrence of the

random variable Th(W;'y — ¢;) = Th(W," A*z* — ¢;) by the indicator random variable 1;cqupp(z+)- This
proxy is shown to be a good approximant of the expected gradient in the following lemma.

Lemma 5.1. Assume that the hypotheses of Theorem 3.1 hold and additionally let b be bounded by a poly-
nomial in h. Then we have for each i (indexing the columns of W),

—— oL
L —F|——
el |

Proof. This lemma has been proven in Section|[§|of the Appendix. O

hPm?

Lemma 5.2.
Assume that the hypotheses of Theorem hold, and p < min{%, v?} (and hence ¢ > 2p). Then for each

i indexing the columns of W, there exist real valued functions a; and 3;, and a vector e; such that V/;L =
a;W; — ,BZA: + e;, and

a; = O(maoh?™1) 4 o(m3InP~1)
Bi = O(mah?™") + o(mih? ™)
— Bi = o(max{m? mo}hP™1)
|leill2= o(max{m{,ma}h?~")

Proof. In subsection [5.1| we first get explicit forms of the above defined quantities «;, 5; and e;. Then the
proof is completed by estimating these which is done in Appendix[J] O

With the above asymptotic results, we are in a position to assemble the proof of Theorem 3.2]

Proof of Theorem[3.2] Consider any i indexing the columns of W . Recall the definition of the proxy gradient
V L at the beginning of this section. Let us define v; = V L—E { } Using o, f; and e; as defined in

Lemma we can write the expectation of the true gradient as, E [W} = a;W; — B; A} + e; — ;. Further,
by Lemma

hPm?
[l7:[|< poly (h)exp (Q(b_a)g) :

Since exp (22)’7_7"52) is superpolynomial in h, we obtain

oL

= || W; — B A7 + e; — il |2
2

= |Jas(Wi — A7) + (i — Bi) AT + e — il |2
< ai|[|Wi = Aflla+]ai — Bil+[les — vill2
< @(mghp_l)
= h2pt6?

+ o(max{m?2, my}hP~1)

+ o(max{m?, my }hP~1)

= o(max{m3, my}h?~1)

5.1 Simplifying the proxy gradient of the autoencoder under the sparse-coding gener-
ative model - to get explicit forms of the coefficients ¢, 5 and e as required towards

proving Lemma

To recap we imagine being given as input signals y € R™ (imagined as column vectors), which are generated
from an overcomplete dictionary A* € R"*" of fixed incoherence. Let 2* € R" (imagined as column vectors)
be the sparse code that generates y. The model of the autoencoder that we now haveis § = W ' ReLU(Wy—e).
W is a h x n matrix and the i*" column of W is to be denoted as the column vector W;.

Using the above notation the squared loss of the autoencoder is 1|/ — y|[%. But we introduce a dummy
constant D = 1 to be multiplied to y because this helps read the complicated equations that would now
follow. This marker helps easily spot those terms which depend on the sensing of 2* (those with a factor
of D) as opposed to the terms which are “purely” dependent on the neural net (those without the factor of
D). Thus we think of the squared loss L of our autoencoder as,

1, . 1 .
L = 31§ = Dy|[*= 5 (W ReLU(Wy —) = Dy) (W 'ReLU(Wy —) — Dy) = 5 f" f

where we have defined f € R" as,
f=WTReLU(Wy —€) — Dy

Then we have,

JWi, (f)ab = aamf/? = ReLU(WzTy - 6)(Sab + Th(WzTy - E)Wiayb
ib
In the form of a n x n derivative matrix this means,
Jw,(f) = [aav*éa } =ReLU(W,"y —)] + Th(W, y — e) Wiy "
ib
This helps us write,
oL T
e N

= (ReLUW,"y —)T + Th(W, y — e) Wiy ") T [W T ReLU(Wy — €) — Dy

j=1

h
=Th(W;"y — &) [(W,"y — &) + yW,] (Z ReLU(W, y — ¢;)W; — Dy)

Now going over to the proxy gradient VL corresponding to this term and we define the vector G; as,

V/i\L = Eses |Lies X Eqoy
JES

(W y — e +yW,] (Z(W;y — &)W — Dy)

= Egses [1z‘es X Gi]

Thus we have,

Gi =By | (W, A%2" —)T+ (A2)W,] [D (W, A*2" — ¢;)W; — DAz
L JES
=By (W, A% — &) | Y (W A%2* — ;)W — DA"2"
L j€S
Term 1

+E,

0¥

(A*z*)W," Z(W]TA*I* —€;)W; — DA™ x*
j€s

Term 2

which can be decomposed into the following convenient parts,

Gi=Faoy | ;Wi — > e(W ADWyai — Y e;(WiT AWy + Y (W Ap) (W] A)) Wi
JES 7,keS 7,keS 7,k,leS

From Term 1

T A% * ok ok * ok * T * ok ok
Jkes j€S j.kes
From Term 1 From Term 2

F B | = > GAT W Wz | + By | D (W W) (W] A)) Afar;
j,keS j.k,lES

From Term 2 From Term 2
Now we invoke the distributional assumption about i.i.d sampling of the coordinates for a fixed support and

the definition of m; and ms to write, E [2]z}] = EZ. [¢]] = m{ for all i # j and for i = j, mz = Eyy [z} 2]].
Thus we get,

10

Gi=Y ae;Wy—my Y (W ADWei —ma Y e; (W, AW,

JES j,keS j,keS

G} From Term 1

+my Y (WTADW AW, +mi Y (WA (W, ADW;

j.k€S 3.k, l€S
kAl

G? From Term 1

+ [=Dmi > (W, ADA; — Dmy Y (W, A AT +miD Y € A;
j,];eks JeSs JjES
J

G?3 From Term 1

— |Dm? > (ATW) AT + Dmy Y (AW A
j,_l;ekS jes
J

G From Term 2

—my | > GWIWHAL| + |me Y (WIWH (W ADA; +mi > (W W) (W) A))A;
7,keS 7,keS j,i,;léels

G “? From Term 2

Each term in the above sum is a vector. Now we separate out from the sums the terms which are in the
directions of W; or A} and the rest. We remember that this is being under the condition that ¢ € S. To make
this easy to read we do this separation for each line of the above equation separately in a different equation
block. Also inside every block we do the separation for each summation term in a separate line.

11

Gl =D eeWy —mu Y (WIADWes —mu Yy e (Wi AW,

jes J.k€S j,k€S

= €?Wi + Z €€;W;
JES
J#i

—ma | YW AW+ Y (WA We
kes jkeS
i i#i

—m Zﬁi(WiTAZ)Wi + Z e; (W, A})W;
JFT

GZ=my > (W ADW AW, +m? Y (W ADW] ADW;

j.kes j.k,l€S
k£l

=My § :(WZ—TAZ)(WiTA,’;)WiJr § (W AR (W AW
kes j,E;S
J7

+mi | Y (WTADWTADW + Y (WA W ADW;

k€S j.kleS
k£l i
k£l

12

GI = =D |md 3" (WTADA; +ma Y (WTADA; —mi Y A]
j,ééeks jes J€s
] v

=D |miY (W ApA; +mi > (W, A;) 4]

keS j,kes
ki Ji
L ik

— D | ma(W; A A} +my Y (W, A3) A
jeS
J#i

— D [—migA —ml E €A
J€S
J#i

Gi=—|Dm? S (ALTW)AS + Dmy > (ATWi)AS
3,keS jeSs
ik

=—-D mlz A*TW A*-i-ml Z A;:-TWz

kes j,kES
ki G4k
j#i

— D [ma(A;TW)A; +ma Y (ATW)AS
JjeS
J#i

13

Gy =—mi | Y W WHAL| + [mz Y (WITWHWADAL +mi Y (WTW) (W) A7) A7

j,keS j,keS 3,k,ES
kAl

= —m Z e (W,T W) A —my Z e; (W, Wj) Ax

JjES J,kES
k#i
oy Y (W W) (W ADA; +ma Y (W, W) (W, Af) A;,
JES j,k€S
ki
+mi Y (WIWHWTADA +mi Y (WW,)(W)Af)A;,
7,leS J,k,lES
1#i k#i,l

Thus combining the G}, ..., G} above we have, VL = a;W; — BiA; + e; where,

a; = Eges | lies ¥ {m2 Z(WJAZ)(WJAZ) + m% Z (WiTAZ)(WiTAl*) —2my Z €i(WiTAZ) + 6?}
L kes kklils kes

B; = Eges | Lics x {wmf > (W,TAL) +2Dma(W,T A7) — Dmye; +my Y e;(W,T W)

kes jeS
ki
—my Y (W W)W A7) —m? Y (W, W, WTAZ)}
Jjes j,les

1#i

- ESES ies X {ZG’LG] j — M1 Z 61 WTAk>W —m Z 6_7 WTA*)W
JES j.kes j.kES
i i i
+my Y (WTADW AW, +mi Y (WA (W] AN W;
J,keS j.k,l€S
J#i JFi
k#£l
—2Dm} > (W A;)A; —2Dmy Yy (WA A + Dmy Y e Al
j,keS jeSs jeS
JFi J#i J#i
J#k

—my > (W Wy Af +my Y (W W) (WA A +mi > (WW, WTAZ)A*}
7,keS 7,keS 7,k,l€ES
k#i k#i k#1,l

Thus we have laid the groundwork of finding a convenient decomposition of the proxy-gradient in terms
of the quantities o, 8; and e;. Now we can go over to Appendix [where their magnitudes are estimated
towards completing the proof of Lemma

6 Simulations

We conduct some experiments on synthetic data in order to check whether the gradient norm is indeed small
within the columnwise J-ball of A*. We also make some observations about the landscape of the squared

14

loss function, which has implications for being able to recover the ground-truth dictionary A*.

Data Generation Model We generate random gaussian dictionaries (A*) of size n x h where n = 50, and
h = 256,512,1024,2048 and 4096. For each h, we generate a dataset containing N = 5000 sparse vectors
with h? non-zero entries, for various p € [0.01,0.5]. In our experiments, the coherence parameter £ was
approximately 0.1. The support of each sparse vector z* is drawn uniformly from all sets of indices of size
h?, and the non-zero entries in the sparse vectors are drawn from a uniform distribution between a = 1
and b = 10. Once we have generated the sparse vectors, we collect them in a matrix X* € R"*¥ and then
compute the signals Y = A*X*. We set up the autoencoder as defined through equation[I} We analyze the
squared loss function in (2)) and its gradient with respect to a column of W through their empirical averages
over the signalsin Y.

Results Once we have generated the data, we compute the empirical average of the gradient of the loss
function in ([2)) at 200 random points which are columnwise g = 572> away from A*. We average the gradient
over the 200 points which are all at the same distance from A*, and compare the average column norm of
the gradient to h?~!. Our experimental results shown in Tabledemonstrate that the average column norm
of the gradient is of the order of h?~! (and thus falling with A for any fixed p) as expected from Theorem

B2

) p 0.01 0.02 0.05 0.1 0.2
256 (0.0137,0.0041) | (0.0138, 0.0044) | (0.0126,0.0052) | (0.0095, 0.0068) | (0.0284, 0.0118)
512 (0.0058, 0.0021) | (0.0058, 0.0022) | (0.0054, 0.0027) | (0.0071,0.0036) | (0.0104, 0.0068)
1024 (0.0025, 0.0010) | (0.0024, 0.0011) | (0.0026, 0.0014) | (0.0079, 0.0020) | (0.0078, 0.0039)
2048 (0.0011, 0.0005) | (0.0012,0.0006) | (0.0025,0.0007) | (0.0031,0.0010) | (0.0032, 0.0022)
4096 (0.0006, 0.0003) | (0.0012,0.0003) | (0.0013,0.0004) | (0.0026, 0.0006) | (0.0020, 0.0013)
p

) 0.3 0.5

256 (0.0464, 0.0206) | (0.0343, 0.0625)

512 (0.0214, 0.0127) | (0.0028, 0.0442)

1024 (0.0099, 0.0078) | (0.00, 0.0313)

2048 (0.0036, 0.0048) | (0.00, 0.0221)

4096 (0.0008, 0.0030) | (0.00, 0.0156)

Table 1: Average gradient norm for points that are columnwise away from A*. For each h and p we report

(\ |E {;—WL,} Il hp_1>. We note that the gradient norm and h?~! are of the same order, and for any fixed p the
gradient norm is decreasing with h as expected from Theorem

We also plot the squared loss of the autoencoder along a randomly chosen direction to understand the
geometry of the landscape of the loss function around A*. We draw a matrix AW from a standard normal
distribution, and normalize its columns. We then plot f(t) = L((A* +tAW)T), as well as the gradient norm
averaged over all the columns. For purposes of illustration, we show these plots for p = 0.01,0.1,0.3. The
plots for h = 256 are in Figure(I| and those for i = 4096 in Figure 2l From the plots for p = 0.01 and 0.1,
we can observe that the loss function value, and the gradient norm keep decreasing as we get close to A*.
Figure [I| and [2| are representative of the shapes obtained for every direction, AW that we checked. This
suggests that A* might conveniently lie at the bottom of a well in the landscape of the loss function. For the
value of p = 0.3, (which is much larger than the coherence parameter), Theorem[3.1]is no longer valid. We
see that the value of the loss function decreases a little as we move away from A*, and then increases. We
suspect that A* is here in a region where ReLU(A* "y — ¢) = 0, which means the function is flat in a small
neighborhood of A*.

15

Autoencoder Cost Average Column Norm of Gradient

1012 1 107
1010 A 105 4
105_
103 4
106,
10] 4
104_
— p=0.01 — p=0.01
107 — p=0.1 07 — p=01
—— p=0.3 — p=0.3
tll 5‘0 160 15‘0 260 25‘0 tll 5‘0 160 15‘0 260 25‘0
Distance from A* in & units Distance from A* in & units
Figure 1: Loss function plot for h = 256, n = 50
Autoencoder Cost Average Column Norm of Gradient
1018 - 1010
10%5 4 101
105,
1012 4
104,
103_
102 4
105,
100,
— p=0.01 — p=0.01
107 1 — p=0.1 107 4 — p=0.1
— p=0.3 —— p=0.3
6 10‘00 20‘00 3060 40::]0 tll 10‘00 2600 30::]0 40‘00
Distance from A* in & units Distance from A* in & units

Figure 2: Loss function plot for h = 4096, n = 50

16

We also tried to minimize the squared loss of the autoencoder using gradient descent. In these experi-
ments, we initialized W' far away from A* (precisely at a columnwise distance of £ x §), and did gradient
descent until the gradient norm dropped below a factor of 2 x 107° of the initial norm of the gradient.
We then computed the average columnwise distance between W, | and A*, and report the % decrease in
the average columnwise distance from the initial point. These results are reported in Table 2|below. These
experiments suggest that there is a neighborhood of A* (the radius of which is increasing with h), such
that gradient descent initialized at the edge of that neighborhood, greatly reduces the average columnwise

distance between W' and A*.

[h [[p=005]p=0.1]
256 [[97.7% | 96.9%
512 || 98.6% | 98.2%
1024 | 99% | 98.8%
2048 || 99.2% [99%
409 || 99.4% | 99.2%

Table 2: Fraction of initial columnwise distance covered by the gradient descent procedure

17

7 Conclusion

In this paper we have undertaken a rigorous analysis of the loss function of the squared loss of an au-
toencoder when the data is assumed to be generated by sensing of sparse high dimensional vectors by an
overcomplete dictionary. We have shown that the expected gradient of this loss function is very close to
zero in a neighborhood of the generating overcomplete dictionary.

Our simulations complement this theoretical result by providing further empirical support. Firstly, they
show that the gradient norm in this —ball of A* indeed falls with h and is of the same order as hl%p as
expected from our proof. Secondly, the experiments also strongly suggest ranges of values of h and p where
A* is a local minima of this loss function and that it has a neighborhood where the reconstruction error is
low.

This suggests sparse coding problems can be solved by training autoencoders using gradient descent based
algorithms. Further, recent investigations have led to the conjecture/belief that many important unsuper-
vised learning tasks, e.g. recognizing handwritten digits, are sparse coding problems in disguise [25] 26]].
Thus, our results could shed some light on the observed phenomenon that gradient descent based algo-
rithms train autoencoders to low reconstruction error for natural data sets, like MNIST.

It remains to rigorously show whether a gradient descent algorithm can be initialized randomly (may be far
away from A*) and still be shown to converge to this neighborhood of critical points around the dictionary.
Towards that it might be helpful to understand the structure of the Hessian outside this neighborhood. Since
our analysis applies to the expected gradient, it remains to analyze the sample complexities where these nice
results will become prominent.

The possibility also remains open that this standard loss or some other loss functions exist for the autoen-
coder with the provable property of having a global minima/minimum at the ground truth dictionary. We
have mentioned one example of such in a special case (wWhen A* is square orthogonal and z* is nonnegative)
and even in this special case it remains open to find a provable optimization algorithm.

On the simulation front we have a couple of open challenges yet to be tackled. Firstly, it is left to find
efficient implementations of the iterative update rule based on the exact gradient of the proposed loss func-
tion which has been given in ([2]). This would open up avenues for testing the power of this loss function
on real data rather than the synthetic data used here. Secondly, a simulation of the main Theorem [3.2| that
can probe deeper into its claim would need to be able to sample A* for different £ at a fixed value of the
incoherence parameter . This sampling question of A* with these constraints is an unresolved one that is
left for future work.

Autoencoders with more than one hidden layer have been used for unsupervised feature learning [22]] and
recently there has been an analysis of the sparse coding performance of convolutional neural networks with
one layer [20] and two layers of nonlinearities [39]]. The connections between neural networks and sparse
coding has also been recently explored in [[14]]. It remains an exciting open avenue of research to try to do a
similar study as in this work to determine if and how deeper architectures under the same generative model
might provide better means of doing sparse coding.

Acknowledgements

Akshay Rangamani and Trac Tran are partially supported by the US Air Force under contract FA8651-17-C-
0017. Akshay Rangamani and Peter Chin are also supported by the AFOSR grant FA9550-12-1-0136. Peter
Chin is also supported by National Science Foundation grant DMS 1737897 and National Institute of Health
grant R21 EY028381-01 Amitabh Basu and Anirbit Mukherjee gratefully acknowledges support from the

18

National Science Foundation grant CMMI1452820 and Office of Naval Research grant N000141812096. We
would like to thank Raman Arora (JHU), and Siva Theja Maguluri (Georgia Institute of Technology) for
illuminating comments and discussion.

19

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv
preprint arXiv:1603.04467, 2016.

[2] A. Agarwal, A. Anandkumar, P. Jain, P. Netrapalli, and R. Tandon. Learning sparsely used overcom-
plete dictionaries. In COLT, pages 123-137, 2014.

[3] G. Alain and Y. Bengio. What regularized auto-encoders learn from the data-generating distribution.
Journal of Machine Learning Research, 15(1):3563-3593, 2014.

[4] Z. Allen-Zhu. Natasha 2:faster non-convex optimization than sgd. arXiv preprint arXiv:1708.08694,
2017.

[5] A. Anandkumar, R. Ge, D.]. Hsu, S. M. Kakade, and M. Telgarsky. Tensor decompositions for learning
latent variable models. Journal of Machine Learning Research, 15(1):2773-2832, 2014.

[6] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee. Understanding deep neural networks with rectified
linear units. arXiv preprint arXiv:1611.01491, 2016.

[7] S. Arora, A. Bhaskara, R. Ge, and T. Ma. More algorithms for provable dictionary learning.
arXiv:1401.0579, 2014.

[8] S. Arora, R. Ge, T. Ma, and A. Moitra. Simple, efficient, and neural algorithms for sparse coding. In
COLT, pages 113-149, 2015.

[9] S. Arora, R. Ge, and A. Moitra. New algorithms for learning incoherent and overcomplete dictionaries.
In COLT, pages 779-806, 2014.

[10] D. Arpit, Y. Zhou, H. Ngo, and V. Govindaraju. Why regularized auto-encoders learn sparse represen-
tation? In International Conference on Machine Learning, pages 136-144, 2016.

[11] P.Baldi. Autoencoders, unsupervised learning, and deep architectures. In Proceedings of ICML Workshop
on Unsupervised and Transfer Learning, pages 37-49, 2012.

[12] Y.Bengio, L. Yao, G. Alain, and P. Vincent. Generalized denoising auto-encoders as generative models.
In Advances in Neural Information Processing Systems, pages 899-907, 2013.

[13] J. Blasiok and J. Nelson. An improved analysis of the er-spud dictionary learning algorithm.
arXiv:1602.05719, 2016.

[14] A. Bora, A. Jalal, E. Price, and A. G. Dimakis. Compressed sensing using generative models. arXiv
preprint arXiv:1703.03208, 2017.

[15] A. Coates, A. Ng, and H. Lee. An analysis of single-layer networks in unsupervised feature learning.
In Proceedings of the fourteenth international conference on artificial intelligence and statistics, pages 215-223,
2011.

[16] A. Coates and A. Y. Ng. The importance of encoding versus training with sparse coding and vector
quantization. In Proceedings of the 28th International Conference on Machine Learning (ICML-11), pages
921-928, 2011.

[17] S. S. Du, J. D. Lee, and Y. Tian. When is a convolutional filter easy to learn? arXiv preprint
arXiv:1709.06129, 2017.

[18] R. Ge, C. Jin, and Y. Zheng. No spurious local minima in nonconvex low rank problems: A unified
geometric analysis. arXiv preprint arXiv:1704.00708, 2017.

20

[19] A.Gilbert. Cbms conference on sparse approximation and signal recovery algorithms, may 22-26, 2017
and 16th new mexico analysis seminar, may 21. https:/ /www.math.nmsu.edu/ jlakey/cbms2017/
cbms_lecture notes.html.

[20] A. C. Gilbert, Y. Zhang, K. Lee, Y. Zhang, and H. Lee. Towards understanding the invertibility of
convolutional neural networks. arXiv preprint arXiv:1705.08664, 2017.

[21] M.]Janzamin, H. Sedghi, and A. Anandkumar. Beating the perils of non-convexity: Guaranteed training
of neural networks using tensor methods. arXiv preprint arXiv:1506.08473, 2015.

[22] Q.V.Le. Building high-level features using large scale unsupervised learning. In 2013 IEEE international
conference on acoustics, speech and signal processing, pages 8595-8598. IEEE, 2013.

[23] J.Li, T. Zhang, W. Luo, J. Yang, X.-T. Yuan, and J. Zhang. Sparseness analysis in the pretraining of deep
neural networks. IEEE transactions on neural networks and learning systems, 2016.

. Li an . Yuan. onvergence analysis of two-layer neural networks with relu activation. arXiv
24] Y. Liand Y. i C fot ly £ lay 1 k h rel Xi
preprint arXiv:1705.09886, 2017.

[25] A.Makhzani and B. Frey. K-sparse autoencoders. arXiv preprint arXiv:1312.5663, 2013.

[26] A.Makhzani and B.J. Frey. Winner-take-all autoencoders. In Advances in Neural Information Processing
Systems, pages 2791-2799, 2015.

[27] S. Mei, Y. Bai, and A. Montanari. The landscape of empirical risk for non-convex losses. arXiv preprint
arXiv:1607.06534, 2016.

[28] A.Moitra and G. Valiant. Settling the polynomial learnability of mixtures of gaussians. In Foundations
of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on, pages 93-102. IEEE, 2010.

[29] A.Ng. Sparse autoencoder. 2011.

[30] B.A.Olshausen and D.]. Field. Emergence of simple-cell receptive field properties by learning a sparse
code for natural images. Nature, 381(6583):607, 1996.

[31] B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed
by v1? Vision research, 37(23):3311-3325, 1997.

[32] B. A.Olshausen and D.J. Field. How close are we to understanding v1? Neural computation, 17(8):1665-
1699, 2005.

[33] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio. Contractive auto-encoders: Explicit invariance
during feature extraction. In Proceedings of the 28th international conference on machine learning (ICML-
11), pages 833-840, 2011.

[34] H. Sedghi and A. Anandkumar. Provable methods for training neural networks with sparse connec-
tivity. arXiv preprint arXiv:1412.2693, 2014.

[35] D. A. Spielman, H. Wang, and J. Wright. Exact recovery of sparsely-used dictionaries. In COLT, pages
37-1,2012.

[36] Y. Tian. An analytical formula of population gradient for two-layered relu network and its applications
in convergence and critical point analysis. arXiv preprint arXiv:1703.00560, 2017.

[37] T. Tieleman and G. Hinton. RMSprop Gradient Optimization.

[38] A. M. Tillmann. On the computational intractability of exact and approximate dictionary learning.
IEEE Signal Processing Letters, 22(1):45-49, 2015.

21

[39] P.Vardan, Y. Romano, and M. Elad. Convolutional neural networks analyzed via convolutional sparse
coding. arXiv preprint arXiv:1607.08194, 2016.

[40] P. Vincent, H. Larochelle, Y. Bengio, and P-A. Manzagol. Extracting and composing robust features
with denoising autoencoders. In Proceedings of the 25th international conference on Machine learning, pages
1096-1103. ACM, 2008.

[41] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising autoencoders:
Learning useful representations in a deep network with a local denoising criterion. Journal of Machine
Learning Research, 11(Dec):3371-3408, 2010.

[42] L. Wu, Z. Zhu, et al. Towards understanding generalization of deep learning: Perspective of loss land-
scapes. arXiv preprint arXiv:1706.10239, 2017.

[43] Q.Zhang, R. Panigrahy, S. Sachdeva, and A. Rahimi. Electron-proton dynamics in deep learning. arXiv
preprint arXiv:1702.00458, 2017.

22

Appendix

8 The proxy gradient is a good approximation of the true expectation
of the gradient (Proof of Lemma 5.1)

Proof. To make it easy to present this argument let us abstractly think of the function f (defined for any
i€{1,2,3,..,h})as f(y, W, X) = 6% where we have defined the random variable X = Th[W1y — ¢;]. Itis
to be noted that because of the ReLU term and its derivative this function f has a dependency on y = A*z*
even outside its dependency through X. Let us define another random variable Y = 1;cgypport(2+)- Then we
have,

<E-[|f(y, W, X)(Ax=y + 1xzy) — f(y, W,Y)(Ax=y + 1x2v)|e,]
<Ee[|(f(y, W, X) = f(y, W, Y)) |0, 1x 2v]
VB (. W, X) — f(5, W.Y) 2] B [Lxv]

In the last step above we have used the Cauchy-Schwarz inequality for random variables. We recognize
that E,- [f(y, W, Y)] is precisely what we defined as the proxy gradient V, L. Further for such I¥ as in this
lemma the support recovery theorem (Theorem 3.1) holds and that is precisely the statement that the term,
E;«[1xy] is small. So we can rewrite the above inequality as,

ot =] = Vel

We remember that f is a polynomial in h because its & dependency is through Frobenius norms of subma-
trices of W and {5 norms of projections of Wy. But the ¢, norm of the training vectors y (that is b) have
been assumed to be bounded by poly(h). Also we have the assumption that the columns of W are within
a 1 —ball of the corresponding columns of A* which in turn is a n x h dimensional matrix of bounded
norm because all its columns are normalized. So summarizing we have,

2
Fy, W, X) = fy, W,Y)[3] exp (_%)

oL hPm?
< -1
’]E [aW] VLZ_poly(h)exp(2(ba)2)
The above inequality immediately implies the claimed lemma. O

9 The asymptotics of the coefficients of the gradient of the squared loss
(Proof of Lemma 5.2)

We will pick up from where subsection[5.T|left and will now estimate bounds on each of the terms a;, 3;, ||es|,
which were defined at the end of that segment. We will separate them as «; = &; +d; (similarly for the other
terms). Where the tilde terms are those that come as a coefficient of ms, and the hat terms are the ones that
come as coefficient of m; or € or both. (Note : Given the previous definitions of ¢; and ¢, it is obvious from
context as to how the quantities g¢;, gi;, ¢i;x and ¢s mean and we shall use this notation in this Appendix.)

23

9.1 Estimating the m, dependent parts of the derivative

Since ||Af||= 1 and W; is being assumed to be within a 0 < § < 1 ball of A} we can use the following
inequalities:
(Wil = [[Wi = A7 + AZ[|< |[Wi = A7[[+[[A7]|= 0 + 1
Wil >1 -6
(Wi A7) = (Wi — A7, AD) + (AL AD) < [[W, — AZ|[|AZ][+1 < 5+ 1
(Wi, A7)y > 146

* * * * * H * * H
[(Wi, AD | = [(W; — Af, A7) + (A, ADIS —= + [[W; — Afll[|Afll= —= + 0

NG Vv

* * :u 2 ,u
W: W\l = (W, — A* W, * W< Y = =
|< T]>‘ ‘< T Am J>+<Az’]>|—6(1+6)+(6+ \/ﬁ) 6 +25+\/’Tl
(Wi, Wi) = [|[Wi] P> (1 - 6)?

(Wi, Wi) = [[Wil[P< (1 +0)?

Bounding f;

B; =Eses |1 163{2Dm2W A7) —mp Y (WW. WTA*)H
L JeES

= Eges | Lies 2Dm2<Wi,A2‘>7m2\|W¢H2<Wi,A;‘>7m22<Wi,Wj><Wj,AI)

Jj€ES
L i
Evaluating the outer expectation we get,
) h
Gi= S as2Dma(Wi AD) = S qsmal| WP AL —mo WL W (W AD S s
{Ses:ieS} {SeS:ieS} j_;l_ {S€S:i,5€8,i#5}
JF
h
= 2Dgma(Wi, A7) — qumol (Wil > (Wi, A7) —ma >~ 4y (Wi, Wy) (W5, A7)
j=1
JFi

Upper bounding the above we get,

Bi < 2DmahP=1(1 + 6) — mah?~1(1 — 8)% + moh2" (5 + “) (52 +20+ “)

Vn vn
= 2Dm2hp71(1 + h*P*Vz) _ mghp71(1 _3p P’ + 3p20—2” h73p73u2)
N e (e N R (5)

Similarly for the lower bound on §; we get,

Bi > 2DmahP~ (1 — 6) — mahP L (1 4 6)3 — moh?P~1 <6 + “) (62 + 20 + ”)

vn Vn
= 2Dm2hp_1(1 — h_p_,}) — m2hp—1(1 + 3h—p—u2 + 3h—2p—2u2 + h—3p—3u2)
Y e (e D) e L Y e T R Iy) (6)

Thus for 0 < p < 26 and D = 1, we have 8 = © (mph?™!)

24

Bounding &;

a; = Eses | Lics {m2 Z(WiTAZ)Z}

kesS

= Eses |Lics § ma(Wi, A7)* +ma Y (W;, Af)?

kesS
L ki
h
= > ma(Wi A %qs+) Y (Wi A3)gs
{SeS:ieS} 113;1 {S€S:i,keS}

h
=m2<Wi,A:>2 Z qs + mao Z<Wi>Az>2 Z as
{SeS:ieS} k=1 {SeS:i,keS,i#k}
k#i
h
= qma(Wi, A7)? +ma Y qi(Wi, Ap)?
=
= hp71m2<Wi, A;k>2 + mgthfl max <W1, Az>2

The above implies the following bounds,
WP tmg(1— hP)? < @ < WP 'mg(1+ h™P"")2 4 moh® Y (P~ + h¢)? 7)
Aslongas0 < p < 2¢, d; = © (mah?™1)

Bounding ||€;|2

€ =Eses |Lics x { ma Y (W, Ap) (W[A)W; + (—2D)mg Y (W, A7) A3
j,kES JjeS
J#i i

+Eses |Lies x {ma Y (W, W) (W, A})A;,
j,kis
k#1

Expanding further over the summation of the j and the & indices we have,

25

€ = Eses lliGSXWQ{ S WTAHWT AW+ Y (WA (W] ADW;
j(=k)eS\i jeS\i
keS\i,j

+ > WZ-TAZ‘)(WJ-TAZ‘)WJH

]68\1
k=1

+Eses |Lies X (—2D)my QY (W;T A7) A;
jes
i

1ieg><m2{ S WIW)W ApA+ > (WTW(WT AL A;
k(=j)esS\i keS\i
j€S\i,k

+ Eses

+ > (W, WTAk)A*}

keS\i
Jj=i

Expanding the above in terms of ¢g we have,

h h
é”':"”{ YORUAPSTAFHINED DRI IRNS DY AV AR DI
G=1,ji {SES:i,jESJ?ﬁJ} ;,gk; {S€S:i,5,keS,i#j#k}

h
+Y (W AW ANW; > qs}
j=1

= {S€S:i,je€S,i#5}
751

h

+(-2D)ma (D (WTADAT >0 g
j;l {5eS:i,jes,i#5}
VE

h h

+m2{z<wfwk><w,zAz>Az Yt S WA Y s
k=1 {5€S:,keS, ik} jk=1 (S€S:i,5,kES,i#j#k}
k2i Gitk

h
+ Z WoWwAnA; > qg}
iZi

{SeSii,keS, ik}

Expanding the g5 dependency in terms of ¢;; and g¢;;, we have,

26

h h
{ S ai (W AWT AW, + > g (W, AR (W AW,

j=1,j#1 jrk=1
J#k#i

h h
+Zqij(WiTA?)(WJTAI)Wj} (—2D)ma 3 g (W A A

j=1 j=1

J#i i
h h

mz{ > an(W W)W AD AL+ Y aun(W W) (W] Ap) 4;
(= Fizh

h
+ Z ik (WiTWi)(WiTA;;)AZ }
it

Upper bounding the norm of this vector é; we get,

2
1&| < mah®! (5 + “) (14 6)% + mah® ! (5 + “) (1+0)

Vn Vvn
+ mah?? (5 + \%) (1+6)% + 2Dmyh?! (5 + \’/%)
+ mph2P (52 120+ \%) (1+8) + mah~1 (52 +25+ \%) (5 + \%)
+ mgh2P (5 + M’%) (1+6)>

S m2h2p71(h7p7u2 + 2h72p72u2 + h73p731/2 + 2h7p71127§ + h72p72u27£ + h7§)

+ m2h3p—l(h—2p—2y2 + h—3p—31/2 + 2h—p—uz—£ + 2h—2p—21/2—£ + h—2§ + h—p—V2—2£)

4 m2h2p—1(h—p—u2 + 2h—2p—21/2 4 h—Bp—3u2 + 2h—p—vz—§ + h—2p—2u2—§ + h—f)

+ 2Dmah Y (h P 4)

+ m2h2p—1(2h—p—u2 + Sh—2p—2y2 + h—3p—31/2 + h—p—l/z—{ T h—g)

+ m2h3p71(2h72p72l/2 + h73p73u2 + 3h7p7u‘275 + h72p72u27§ + hfzg)

+ m2h2p—1(h—p—V2 + 2h—2p—21/2 + h—Sp—3V2 + 2h—p—1/2—5 =+ h—2p—2u2—§ + h—f) (8)

If D=1and 0 < p < &, we get ||&;||= o(mah?P~1)

27

9.2 Estimating the m; dependent parts of the derivative

We continue working in the same regime for the W matrix as in the previous subsection. Hence the same
inequalities as listed at the beginning of the previous subsection continue to hold and we use them to get
the following bounds,

Bounding a;

&; = Eses | Lies % {m% D (WTADWTAY) —2ma Y e (WD Af) + 2}
L kll:lils keS

= Eses |Lies X {m%Z<Wi,Az><Wi,A* +mi Y (Wi, AL (Wi, A7) +mi Y (Wi, Ap) (Wi, A7)

kes les k€S
ki 1#i k£l
ki
1

— 2m161<Wl,A:> —2my Z 6i<Wi7Az> + 612}

keS
k#i
h h
=2m] > (Wi, Ap) (Wi, A7) > gs +mi > (Wi, Ap) (Wi, A7) > qs
k=1 {S€sii ke, k#i} k=1 {S€Sti, k1S, kAl
k#i k#l
ki
1#i
h
= 2mae; (Wi, A7) Z qs — 2m Z€i<VVv:7AZ> Z s + € Z qs
{SeS:ieS} k=1 {SeS:i,keS,k#i} {SeS:ieS}
k#i
h h
—> i =2m3 Y g (Wi, Ap) (Wi, A7) +m3 Y qia (Wi, AL (Wi, A7)
k=1 kl=1
k#i i
ki
I
h
= 2miqiei(Ws, A7) — 2mq Z qinei(Wi, A%) + qie;
iZi

We plugin €; = 2m, h? (5 %) fori=1,...,h

vn Vn

2
- Iz
+ 4mfh3p 1 <(5 + \/ﬁ> + 4m1h‘3p 1 (5 + \/ﬁ)

_ 2m2h2p71(h7p7u2 + h72p72u2 hfpfusz + h*f) + m%h3pfl(h72p*2u2 + thpflﬂfﬁ + h*2§)
) (/Y e R e T A (e D T R ey S
—|—4m1h3p 1(—2p—212 T op PV 2_¢ + h72§)

2
|d;| < 2m2h?P~1 (5 +) +8) + m2p3r~1 (6 + ”) +4mIn*PT(1 4+ 9) <6+ “)

This means that if p < &, |d;|= o(m?hP~1). Putting this together with the bounds obtained below equation
7} we get that a; = ©(mah? 1) + o(m3hP~1).

28

Bounding f;

Bi = Eges | Lies x {QDmf S (WAL = Dmyei +ma e (W Wy) —mi > (W, W, WTA*)}
kes jES j,les
k#i I£i
h
= ?Z (Wi, A) > gs —Dmie; Y qs+miel[Will* > gs
; {SeS:i,keS,k#i} {SeS:ieS} {SeS:ieS}
h
tmy Y (Wi, W) > QS—m1Z||WH Wi, A7y Y g
j=1,5#i {S€S:i,j€S,j#£i} l# {S€S:i,leS,l#£i}

h h
—m Y (Wi, WY WL AD) Y gs—mi Y (Wi, W) (W, Af) > as

=1 {SeS:i,leS,l#i} J,l=1 {S€S:i,4,l€S,I#i#i}
l#1 1#i
J#l
h h
= 2Dm? Zqz'k<Wi7AZ> — Dmaeiqi + miei||Wil|*q; +ma Z €;qij (Wi, Wj)
If;é% J=1,j#i
h h
—m3 ZHW P (Wi, A7 dqi — m3 Y (Wa, Wiy (Wi, A7)qis —m3 Y (Wi, Wil (Wi, A7)giji
=1 =1
l;éz l#13 Jl;éi
J#L

We plugin €; = 2m,h? ((H— %) fori=1,...,h

5.1 < aDm2n2v1 (5 4+ o et (54 1 2 ot (540) (524254 2
\6i] < 4Dm2h <6+\f>+2mh <5+ﬁ>(1+5) +2m2h (5+\/ﬁ) (5 +2+ e

m2h2P1(1 + §)2 (5 + \%) + m2p2-l (62 Y20+ \%) (1+)

+ m2pr-l (52 120+ \j‘ﬁ) (5 + \%)

— ADM2RP (R e

+ 2m§h2p—1(h—p—l/2 + op,—2r—2v* + p—3p—3v7 +h ¢+ op PV —¢ + h—2p—2u2—§)
+ 2m3h3p71(2h72p72u2 + h73p73u2 + 3h7p71127§ + h72p72u27§ + h’%)
+m2h2p—1(h—p—V2 +2h—2p—21/2 +h—3p—3V2 —|—h_§ +2h—p—u2—g +h—2p—2y2—5)
+m1h2p 1(3h 2p—2v? 4+ p3r— 3u° h7p71/27f_|_2h7p71/2 —i—h*g)

+ m2R3P1 (22 w? | p=dp=3® g oprtog 202 E g 26)

This means that if p < &, |3;|= o(m2hr~1). Putting this together with the bounds obtained below we get
that 8; = ©(mah?~1) + o(m3nP~1).

29

Bounding ||€;|2

€; = Eses | Lies X

ZEiGjo — ma Z (W]TAZ)WJGI — ma Z Gj(WiTAZ)Wj
JjeSs J,kES j,kES
J# J#i J#i

+Eses | Lies %

mi (WA (W ADW;
j,k,1€S
V)
k#l

+ Eses | Lies X

€i2

—2Dm} Y (W, Ap)AS + Dmy Y A7
J,keS jeSs
i J#i

+ Eses | Lies x

—my > G(WIWH AL +mi > (W) (W] A7) 4;
j,kes j,k,leS
ki kil

We estimate the different summands separately.

621 = Egeg 1i€5 X E EiEjo

JeSs
J#i

+ Eges |Llies X (—ma)

+ Eses |Llies X (—ma)

We substitute, € = 2mh?(h~?=*" + h~¢) and for any two vectors x and y and any two scalars a and b we

Y. WTAWe+ Y (W AWe+ D (W) A)We

j(=k)eS\i jEeS\i jes\i
keS\ij k=i

Yo WA+ > ¢ (WTADW; + > (W, ANW;
j(=k)eS\i kjeeSS_i) ng\i
2,3 =1

use the inequality, ||ax + by||2< |a|maz||X]|2,maz |0l maz] ¥]|2,mazto get,

30

2 h
lealla < 4m2h? (6+ “) S alw

\/ﬁ Jj=1,j#i
h h
+ Qm%hl’ <5 + %) (Z qij <Wj, A;>WJ + Z qijk<Wj,Az>Wj
J=1,j#i Gok=1,j#1,k#1,5

h h
(D i (Wi, AW + > @ik (Wi, Ap)W;
=17 G k=1, ki

W

2
— |lei1]]2 < 4mIn*PR*=1(1 +6) <6 + “)

w
+ 2m3hP <5 + “)

vn

2
E=4 ||€;1H2 S 4m%h4p71(1 + 5) (5 + \77)
I

RPN (14 6)? + hPP! (6 - \%) (L+8) +h%~! <5 - \%) (1+ 5))

(
WPl (54 L) @4 6) + 23 (64 L2) 1+ 6) + h2P71(1 +6)2
N Jn

+ 2m§h3p—1 ((5 + %

+2m2n3rt (5 +

2
(1+6) + 2m2pir—1 (5 + “n) (1+4)

+2m2p3P1 <5 + Vo

+2min3rt (5 +

— |lei1]]2 < 8mIn*PT(1+ 06

~—

(5 + \%)2 + 4min®r~! <6 + \%) (14 0)?
m

2
+ dmipPPt (5 +) (1+44)

31

— ||€i1]]o < 8mERAPTL(R=2=2 | g3t g oppv o€y o2 2ioE y poprto26 26
B N I R R T
F Am2R3 PN (B2 e gl o 2ol et 26y g 2
e (e) e) s B B R T
AmIRP T (RPY P TI opm p p2E pm2E gp E)
I N I S D I B e I L L)

From the above it follows that, ||e;1|]2= o(m3h?~1) for p < v? and 2p < ¢
And now we start to estimate ¢;o

32

€i2 = Eses |Lics x m} Z (WiTAZ)(WJ‘TA?)Wj

7,k,leS
J#i
k£l
= Eses [hes X m?{ S WA AW+ > (W AW AW,
JESs j,kES
j#i kg
+Y (W AW AW,
JjES
j#i
+ Y (WADWADW; + > (W ADNW AW, + Y (W Ap) (W) AW
7lES 3,leSs J,kES
I#j#i I#j#i ket j#i
+ > <WJA;)(WJA2‘WH
3,k,1eS
I£k# i
h h
= 622:m?{ZQij(WiTA§)(WJTA?)Wj+ > ai (W AW, AW,
=1 i k=1
i Pt
h
+) a4 (WA (W] AW,
=1
B
h h h
+ > aipW AW ADW; + Y aipn(W AW AN, + > qijn (W, A (W, AW
i=1 j,1=1 j k=1
T Dt iy
+ oy Qijkl(WiTAZ)(W]TA?)Wj}
3,k,1eS
I£k# i
n\? p\?
; < 2 2p—1 o 1 3p—1 e 1
= |ez||_m1{h <5+\/ﬁ> (1+0)+h (5+\/ﬁ) (1+9)+ ||all
H p\? %
3p—1 = 1 2 3p—1 = 1 3p—1 = 1 2
+h <6+\/ﬁ>(+0)*+h (6+\/ﬁ) (1+6)+h <6+\/ﬁ>(+90)
2
pir—1 o 1
+ (6 + \/ﬁ> (+6)}

33

= |lef]| < m%{h2p1(h2p2u2 + h73p73u2 + 2h7p71127§ + 2h72p72u27§ + hfpfl/272£ + hfzg)

+ h3p—1(h—2p—2y2 + = 3p—3v7 + op PV —¢ + op~2p—2v7—¢ + pp—v -2 + h_25)
+|lall

+ h3p—1(h—p—u2 + h—3p—3l/2 + 2h—2p—2u2 + h—2p—21/2—§ + Qh—p—u2—5 + h_f)

B (e e I NI S Y S)
+ h3p—1(h—p—u2 4 po3p=3Y o 22w | p=2p=207—8 gpopvi—E h—g)

+ h4p71(h72p72l/2 + h73p73u2 + 2h7p71127£ + 2h72p72u27§ + h7p711272€ + hzg)}

= |lefal| < mf{hpl(hp2y2 4RI op e g By 2y 2y

4 hp—l(h—2u2 + h—p—3u2 + 2h—y2+p—f + 2h—2V2—§ + h—y2+p—2£ 4 h2p—25)
+ [l

+ hp—l(hp—l/2 4 h—p—31/2 4 2h—21/2 T h—21/2—§ + 2h—l/2+p—§ + h2p—§)

+ hpfl(h72l/2 + h7p73t/2 + 2h7V2+p*f + 2h72u27£ + h7u2+p72§ + h2p72§)
+ hp—l(hp—ll2 4 h—2p—3V2 + 2h—2u2 + h—2u2—§ + 2h—yz+p—f 4 h2p—£)

+ hpfl(hp72l/2 4+ R opp—vi =€ 4 op =2 =€ | vt 2026 h3p2§)}

Now let us find a bound for ||a]|.

h
a=> a(W, ADW 45w,
=1
i
= (W;, A})qi; W diag(W_;A* ;)
Where A” ; is the dictionary A* with the jth column set to zero, W_; is the dictionary W with the jth row

set to zero, and diag(W_;A* ;) is the h-dimensional vector containing the diagonal elements of the matrix
W_; A~ ;. We also make use of the distributional assumption that ¢;; is the same for all 7, j in order to pull

34

¢i; out of the sum.

lall> = h*P~2(W;, A7)||W T diag(W_; A" ;)|
< W71+ 0)||W |2 diag(W—; A)|

< h2p—2(1 + 5)2h1/2)\max(ijW_j)

< BP0 46202 [(62 + 20+ L=) + (14 6)2
< (1+4) + +\/ﬁ +(1+9)

= hpl\/h2p2 X hx (1+§)*x (h <52 +26+ \%) +(1 +6)2>
= hp‘l\/h%*l x (1+ h=p=v*)4 x (h(h=2P=2* 4 2h=P=* 4 h=8) + (1 + h=P=v*)2)

— hP*l \/(1 + h7p7u2)4 X (h72u2 + 2hp71/2 + h2p—¢ + h2p71(1 + h7p7u2)2)

Here ||[W ||, is the spectral norm of W}, and is the top singular value of the matrix. We use Gershgorin’s
Circle theorem to bound the top eigenvalue of W, W_; by its maximum row sum.

Ifp<§,p<iandp<v? then lejs]|= o(mInr~1)
And now we start to estimate €3 as follows.

€i5 = Eges | icg X Dmlzel —2Dm? Z (W,TAp) A

]ES j,keS
J#i JjFi
L ki

=Eses [Lies x { Dmy > e A5 —2Dmi > (W' A5)A5 —2Dm? > (W, A3) 4]

jes jes J,kes
i i = k#j#i
h h
=Dm > qdr Y gs—2DmY (WilAnAT S gs
j= {SeSii,jes,i#]} j=1 {Ses:i,jes,i#j}
i i

h
—2Dm? Z (W,"A})A > qs

:# {Seszi,j,kes,##k}

h h

= Dm1§ :qijelA 2Dm§§ qi;(W,T AN AT — 2Dm3 § : aiji (W, Ap) A
j=1 j=1 7,k=1
Jj#i J#i k#j#i

We plugin €; = 2m4 h? ((H— ﬁ) fori=1,...,h

A - Iz - 1 - 0
||eis|| < 2Dm3h3P~1 (5 - \/ﬁ> + 2Dmih* ! (5 + \/ﬁ) +2Dmih%P! (5 + \/ﬁ>

= 4Dm2RP Y (WP 4 b8 4 2Dm2R2P (P 4)
= 4Dm2RP Y (W + 12PE) 4 2Dm2hP T (Y 4 hPE)

35

This means for D = 1, p < v? and p < §, we have ||ej3||= o(m?hP~1)
And now we start to estimate ¢4 as follows.

€ia = Eges | Lies X ¢ —mu Z e; (Wi W) Aj, +m} Z (W W) (WT A A
j.kes j.k,IES
k#i k#i,l

=Eses |Lies x (—m1) Y a(WW)AL+ > e(WIWHAL+ D (W, W)A;
k(=§)eS\i jes\i keS\i
keS\i,j Jj=t

+Eses |Lies xmiQ > (W, W))W A7) 4;
J.k,leS
kil

=Eses [Lies x (=m1) 4 > aWT WA+ D ¢ (WIWHAL+ D (W W45

k(=j)eS\i JjES\i keS\i
kES\i,j j=i
+ Eses Zegxml{Z(WTWi)(WfA;‘) P WIWR W AD AL+ > (W W) (W) A7) A
kes kes j.kes
k#i k#i J#k#i
+ Y WITW)WTAD AL+ Y (W W) (W AD AL+ Y (W W) (W7 A7) 4;
k,leS k,leS k,leS
#k#i I#k#i I#k#i
+ > ww WTAZ)Ak}
3,k,leS
JEkAlF
h h h
Ga=(=m) S > queW WAL+ Y qures (W W) A+ qiwes(WT W) A,
k=1,k#i jk=1 k=1
JF#kH# ki

h h h
+ m?{ > ain (W W)W AD A+ (W W) (W AD AL+ > qijn (W W) (W) A7) A;,
iZi e fiyesy

b
h

h h
+ > am (W W)W AD AL+ Y qua (W W)W AD AL+ D a (Wi Wa) (W7 A7) A5

k=1 k=1 k=1

l;ﬁk;ﬁi £k I£k£i
+ Z qijrl(W; W)(WTAI)Ak}

oty

We plugin €; = 2m4h? (5 + %) fori =1,...,hin the above to get,

36

2
ll€Ga]| < 2m2R3P1 (5 + “) + 2m2htr-1 <5 + “) (52 125+ “n)

vn vn vn
9m2p3P—1 B 1 2
+2mih <6+\/ﬁ>(+9)
+m2||b|l+m2h =t (5 + L2) (02 + 20+ L) +m2rdt (54 Ao) (62 126 + =
' ' Vn Vn ' Vn Vn
27 3p—1 2 R 273p—1 A 2 i
+mihPTH (14 6) ((5+\/ﬁ)+m1h <6+\/ﬁ> (5 +2§+\/ﬁ>
- I
+m2h*PL(1 +6) <52+25+\/ﬁ>
27 4p—1 K 2 e
+mih <5+\/ﬁ> (5 +25+\/ﬁ)
p\’ 2 p
Al < 99 2p3P—1 B 2p4p—1 -~ 2 L
= ||eia|| < 2min (5+\/ﬁ) +3m2h <5+\/ﬁ> (5 +25+\/ﬁ)
3p— 2
+ 3min’r~! <5+\/ﬁ> (140)?
+m2|bl+m2a2rt (5 + L) (62 420+ Lo) +om2ptrt (54 L) (62 426 + L
1 1 Jn NG 1 NG Vn
- Iz
+m2h3P1(1 +9) (52+25+\/ﬁ>

— |len]| < 2mIRPP (R o ey)
4 3m%h4p71(h73p731/2 4oop—20-wt 4 ap—p—rP—b 4 p-2p-2ig 4 h26)
+ 3mIRAP T (R o g ey el ey ey
+mi|[bl]
+ m%h2p—l(h—3p—3l/2 + 2h—2p—2U2 + 3h—p—u2—5 + h—2p—2u2—£ + h—2£)
4 Qm%h3p—l(h—3p—3v2 n op—2p—20 + 3PV € + p2p—2v7 ¢ + h—25)
+mIRP L (R g 32 e oy o

— ||eja|| < 2m2RPTH(Rm 4 oV HPmE 2028
L DY S S s Y R R
+ 3m2hP L (P 4 on 2 o RS 2 g p2mE Y
+mi|[b|
+ m%hpfl(h72p73l/2 + 2h7p721/2 + 3h71/27§ + h7p721/27§ + hp72£)
4 2m3hP T (P g a2 L gpm L R 2
+m2hP (R g e 26 g

37

Now let us find a bound for ||bl|.

h
b= qu (W, W) (W, AD A}
ik

= (Wi, Wi) (Wi, A7) qi AZ 14,

Where A* is the dictionary A* with the ith column set to zero, and 1;, € R" is the h-dimensional vector of
all ones. Here we make use of the distributional assumption that g;;, is the same for all 4, k£ in order to pull
¢;x out of the sum.

[Ibll2 = hP=2(W;, W) (Wi, AD)I|A 14 |2
< RPPT2(1 4 6)% (1A%l

= h?72(1 4 0)°hY? [Amax (AT A)
— p2r—2(1 37,1/2 B 1
h (1+8)°h 1/h\/ﬁ +

= hp—l\/h2p—2 x hx (1+6)5 x (h\;‘ﬁ + 1)

= pp-1 \/hgp_1 x (1+ h—p—l/2)6 x (h1=€+1)

_ hp—l\/(l + h_p—u2)6 X (h2p—£ + h2p—1)
Here ||A*,||2 is the spectral norm of A* ;, and is the top singular value of the matrix. We use Gershgorin’s
Circle theorem to bound the top eigenvalue of A*} A* ; by its maximum row sum.

Ifp<$,p<i andp < v? then ||ej||= o(m?hP~'). Now we combine the above obtained bounds for |||
(for t € {1,2,3,4}) with the bound obtained below equation|[§|to say that, ||e;||= o(max{m?, ma}hP~1)

9.3 About Q; — 61

Remembering that D = 1 and doing a close scrutiny of the terms in[7Jand [f|will indicate that the coefficients
are the same for the moh?~! term in each of them. (which is the term with the highest h scaling in the mo
dependent parts of a; and ;). So this largest term cancels off in the difference and we are left with the

sub-leading order terms coming from both their m? as well as the m parts and this gives us,

a; — Bi = o(max{m3?, mo}hP~1)

38

	Introduction
	A motivating experiment on MNIST using TensorFlow

	Introducing the neural architecture and the distributional assumptions
	Main Results
	Recovery of the support of the sparse code by a layer of ReLUs
	Asymptotic Criticality of the Autoencoder around A^*

	A Layer of ReLU Gates can Recover the Support of the Sparse Code (Proof of Theorem 3.1)
	Criticality of a neighborhood of A^* (Proof of Theorem 3.2)
	Simplifying the proxy gradient of the autoencoder under the sparse-coding generative model - to get explicit forms of the coefficients , and e as required towards proving Lemma 5.2

	Simulations
	Conclusion
	The proxy gradient is a good approximation of the true expectation of the gradient (Proof of Lemma 5.1)
	The asymptotics of the coefficients of the gradient of the squared loss (Proof of Lemma 5.2)
	Estimating the m_2 dependent parts of the derivative
	 Estimating the m_1 dependent parts of the derivative
	About _i - _i

