
Dynamics in Deep Classifiers trained with the Square Loss:
normalization, low rank, neural collapse and generalization

bounds
Mengjia Xu1,2, Akshay Rangamani1, Qianli Liao1, Tomer Galanti1, and Tomaso Poggio1*

1Center for Brains, Minds and Machines, Massachusetts Institute of Technology,
Cambridge, MA, USA.

2Division of Applied Mathematics, Brown University, Providence, RI, USA.
*Corresponding author. Email: tp@ai.mit.edu

Abstract

We overview several properties – old and new – of training overparametrized deep networks under
the square loss. We first consider a model of the dynamics of gradient flow under the square loss in deep
homogeneous ReLU networks. We study the convergence to a solution with the absolute minimum ρ,
which is the product of the Frobenius norms of each layer weight matrix, when normalization by Lagrange
multipliers (LM) is used together with Weight Decay (WD) under different forms of gradient descent. A
main property of the minimizers that bounds their expected error for a specific network architecture is ρ. In
particular, we derive novel norm-based bounds for convolutional layers that are orders of magnitude better
than classical bounds for dense networks. Next we prove that quasi-interpolating solutions obtained by
Stochastic Gradient Descent (SGD) in the presence ofWDhave a bias towards low rankweightmatrices – that
should improve generalization. The same analysis predicts the existence of an inherent SGD noise for deep
networks. In both cases, we verify our predictions experimentally. We then predict Neural Collapse and its
properties without any specific assumption – unlike other published proofs. Our analysis supports the idea
that the advantage of deep networks relative to other classifiers is greater for problems that are appropriate
for sparse deep architectures such as CNNs. The reason is that compositionally sparse target functions can
be approximated well by “sparse” deep networks without incurring in the curse of dimensionality.

1 Introduction
A widely held belief in the last few years has been that the cross-entropy loss is superior to the square
loss when training deep networks for classification problems. As such, the attempts at understanding the
theory of deep learning has been largely focused on exponential-type losses [1, 2], like the cross-entropy. For
these losses, the predictive ability of deep networks depends on the implicit complexity control of Gradient
Descent algorithms that leads to asymptotic maximization of the classification margin on the training set
[1, 3, 4]. Recently however, [5] has empirically demonstrated that it is possible to achieve a similar level
of performance, if not better, using the square loss, paralleling older results for Support Vector Machines
(SVMs) [6]. Can a theoretical analysis explain when and why regression should work well for classification?
This question was the original motivation for this paper and preliminary versions of it [7, 8].
In deep learning binary classification, unlike the case of linear networks, we expect from previous results (in
the absence of regularization) several global minima with zero square loss, thus corresponding to interpo-
lating solutions (in general degenerate, see [9, 10] and reference therein), because of overparametrization.
Although all the interpolating solutions are optimal solutions to the regression problem, they will in general
correspond to different (normalized) margins and to different expected classification performance. In other
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words, zero square loss does not imply by itself neither large margin nor good classification on a test set.
When can we expect the solutions to the regression problem obtained by Gradient Descent (GD) to have a
large margin?
We introduce a simplifiedmodel of the training procedure that uses square loss, binary classification, gradient
flow and Lagrange multipliers (LM) for normalizing the weights. With this model we show that obtaining
large margin interpolating solutions depends on the scale of initialization of the weights close to zero, in the
absence of regularization (also called weight decay). Assuming convergence, we describe the qualitative
dynamics of the deep network’s parameters and show that ρ, which is the product of the Frobenius norms of
the weight matrices, grows non-monotonically until a large margin, that is small ρ solution is found reached.
Assuming that local minima and saddle points can be avoided, this analysis suggests that with weight
decay (or sometimes with just small initialization), gradient descent techniques may yield convergence to a
minimum with a ρ biased to be small.
In the presence of weight decay, perfect interpolation of all data points cannot occur and is replaced by
quasi-interpolation of the labels. In the special case of binary classification case in which yn = ±1, quasi-
interpolation is defined as ∀ n : |f(xn)− yn| ≤ ϵ, where ϵ > 0 is small. Our experiments and analysis of the
dynamics show that, in the presence of regularization, there is a weaker dependence on initial conditions,
as has been observed in [5]. We show that weight decay helps stabilize normalization of the weights, in
addition to its role in the dynamics of the norm.
We then apply basic bounds on expected error to the solutions provided by SGD (for weight decay λ > 0),
which have locally minimum ρ. For normal training set sizes, the bounds are still vacuous but much closer1
to the test error than previous estimates. This is encouraging because in our setup large overparametriza-
tion, corresponding to interpolation of the training data [11], coexists with a relatively small Rademacher
complexity because of the sparsity induced by the locality of the convolutional kernel.
We then turn to show that the quasi-interpolating solutions satisfy the recently discovered Neural Collapse
(NC) phenomenon [12], assuming SGD with minibatches. According to Neural Collapse, a dramatic
simplification of deep network dynamics takes place – not only do all the margins become very similar to
each other, but the last layer classifiers and the penultimate layer features form the geometrical structure of a
simplex equiangular tight frame (ETF). Here we prove the emergence of Neural Collapse for the square loss
for the networks we study — without any additional assumption (such as unconstrained features).
Finally, the study of SGD reveals surprising differences relative to GD. In particular, in the presence of
regularization, SGD does not converge to a perfect equilibrium: there is always, at least generically, SGD
noise.The underlying reason is a rank constraint that depends on the size of the minibatches. This also implies
an SGD bias towards small rank solutions that reinforces a similar bias due to maximization of the margin
under normalization (that can be inferred from [13]).

Contributions The main original contributions in this paper are
• We analyze the dynamics of deep network parameters, their norm, and the margins under gradient

flow on the square loss, using Lagrange normalization (LN). We describe the evolution of ρ, and the
role of Weight Decay and normalization in the training dynamics. The analysis in terms of Lagrange
multipliers of the dynamics in the “polar” coordinates ρ, Vk is new. Many of the observed properties
are not. Arguably, our analysis of the bias towards minimum ρ and its dynamics with and without
weight decay is an original contribution.

• Our norm-based generalization bounds for CNNs are new. We outline in this paper a derivation for the
case of non-overlapping convolutional patches. The extension to the general case follows naturally and
will be described in a forthcoming paper. The bounds show that generalization for CNNs can be orders
of magnitude better than for dense networks. In the experiments we describe, the bounds turn out
to be loose but close to non-vacuous. They appear to be much better than the other empirical tests of
generalization bounds – all for dense networks – that we know of. The main reason for this, in addition

1by several orders of magnitude!
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to the relatively simple task (binary classification in CIFAR) is the sparsity of the convolutional network,
that is the low dimensionality (or locality) of the kernel.

• We prove that convergence of gradient descent optimization with weight decay and normalization
yields Neural Collapse for deep networks trained with square loss in the binary as well as in the
multiclass classification case. Experiments verify the predictions. Our proof is free of any assumption –
unlike other recent papers that depend on the “unconstrained feature assumption”.

• We prove that training the network using SGD with weight decay induces a bias towards low-rank
weight matrices. As we will describe in a separate paper low rank can yield better generalization
bounds.

• The same theoretical observation that predicts a low-rank-bias also predicts the existence of an intrinsic
SGD noise in the weight matrices and in the margins.

2 Related Work
There has been much recent work on the analysis of deep networks and linear models trained using
exponential-type losses for classification. The implicit bias of Gradient Descent towards margin maxi-
mizing solutions under exponential type losses was shown for linear models with separable data in [14] and
for deep networks in [1, 2, 15, 16]. Recent interest in using the square loss for classification has been spurred
by the experiments in [5], though the practice of using the square loss is much older [6]. Muthukumar et. al.
[17] recently showed for linear models that interpolating solutions for the square loss are equivalent to the
solutions to the hard margin SVM problem (see also [7]). Recent work also studied interpolating kernel
machines [18, 19] which use the square loss for classification.
In the recent past, there have been a number of papers analyzing deep networks trained with the square
loss. These include [20, 21] that show how to recover the parameters of a neural network by training on
data sampled from it. The square loss has also been used in analyzing convergence of training in the Neural
Tangent Kernel (NTK) regime [22, 23, 24]. Detailed analyses of two-layer neural networks such as [25, 26, 27]
typically use the square loss as an objective function. However these papers do not specifically consider the
task of classification.
A large effort has been spent in understanding generalization in deep networks. The main focus has been
solving the puzzle of how overparametrized deep networks (with more parameters than data) are able to
generalize. An influential paper [11] showed that overparametrized deep network that usually fit randomly
labeled data also generalize well when they trained on correctly labeled data. Thus the training error does
not give any information about test error: there is no uniform convergence of training error to test error. This
is related to another property of overparametrization: standard VC bounds are always vacuous when the
number of parameters is larger than the number of data. Though often forgotten, it is however well known
that another type of bounds – on the norm of parameters– may provide generalization even if there are more
parameters than data. This point was made convincingly in [28] which provides norm-based bounds for
deep networks2. Bartlett bounds and related ones [29, 30] in practice turn out to be very loose. Empirical
studies such as [31] found little evidence so far that norms and margins correlate well with generalization.
Neural Collapse (NC) [12] is a recently discovered empirical phenomenon that occurs when training deep
classifiers using the cross-entropy loss. Since its discovery, there have been a few papers analytically proving
its emergence when training deep networks. Mixon et. al. [32] show NC in the regime of “unconstrained
features”. Recent results in [33] perform a more comprehensive analysis of NC in the unconstrained features
paradigm. There have been a series of papers analytically showing the emergence of NC when using the
cross-entropy loss [34, 35, 36]. In the study of the emergence of NCwhen training using the square loss, Ergen
and Pilanci [37] (see also [38]) derived it through a convex dual formulation of deep networks. In addition
to that, [39] and [40] show the emergence of NC in the unconstrained features regime. Our independent

2The focus of this paper on ρ is directly related
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derivation is different from these approaches, and shows that NC emerges in the presence of normalization
and weight decay.
Several papers in recent years have studied the relationship between implicit regularization in linear neural
networks and rank minimization. A main focus was on the matrix factorization problem, which corresponds
to training a depth-2 linear neural network with multiple outputs w.r.t. the square loss (see references in
[13]). Beyond factorization problems, it was shown that in linear networks of output dimension 1, gradient
flow w.r.t. exponential-type loss functions converges to networks where the weight matrix of every layer
is of rank 1. However, for nonlinear neural networks things are less clear. Empirically, several studies (see
references in [13]) showed that replacing the weight matrices by low-rank approximations results in only a
small drop in accuracy. This suggests that the weight matrices in practice are not too far from being low-rank.

3 Problem Setup
In this section, we describe the training settings considered in our work. We study training deep neural
network with ReLU non-linearity using square loss minimization for classification problems. In the proposed
analysis, we apply a specific normalization technique: Weight Normalization, which is equivalent to Lagrange
multiplier, as well as regularization (also called Weight Decay), since such mechanisms seem commonly
used for reliably training deep networks using gradient descent techniques [5, 41].

3.1 Assumptions
Throughout the theoretical analysis we make in some places simplifying assumptions relative to standard
practice in deep neural networks. We mostly consider the case of binary classification though our analysis
of Neural Collapse includes multiclass classification. We restrict ourselves to the square loss. We consider
gradient descent techniques but we assume different forms of them in various sections of the paper. In
the first part, we assume continuous Gradient Flow (GF) instead of GD or SGD. Gradient flow is the limit
of discrete Gradient Descent algorithm with the learning rate being infinitesimally small (we describe an
approximation of Gradient Descent within a Gradient Flow approach in [8]). SGD is specifically considered
and shown to bias rank and induce asymptotic noise that is unique to it. The analysis of Neural Collapse
is carried out using SGD with small learning rates. Furthermore, we assume weight normalization by a
Lagrange multiplier term added to the loss function, that normalizes the weight matrices. This is equivalent
to Weight Normalization but is not equivalent to the more commonly used Batch Normalization.
We also assume throughout that the network is overparametrized and so that there is convergence to global
minima with appropriate initialization, parameter values and data.

3.2 Classification with Square Loss Minimization
In this work we consider a square loss minimization for classification along with regularization and weight
normalization. We consider a binary classification problem given a training dataset S = {(xn, yn)}Nn=1,
where xn ∈ Rd are the inputs (normalized such that ∥xn∥ ≤ 1) and yn ∈ {±1} are the labels. We use deep
rectified homogeneous networks with L layers to solve this problem. For simplicity, we consider networks
fW : Rd → Rp of the following form fW (x) = WLσ (WL−1 . . . σ (W1x) . . .), where x ∈ Rd is the input to
the network and σ : R→ R, σ(x) = max(0, x) is the rectified linear unit (ReLU) activation function that is
applied coordinate-wise at each layer. The last layer of the network is linear (see Figure 1).
Due to the positive homogeneity of ReLU (i.e., σ(αx) = ασ(x) for all x ∈ R and α > 0), one can reparametrize
fW (x) by considering normalized3 weight matrices Vk = Wk

∥Wk∥ and define ρk = ∥Wk∥ obtaining fW (x) =

ρLVLσ (ρL−1 . . . σ (ρ1V1x) . . .). Because of homogeneity of the ReLU it is possible to pull out the product of
the layer norms as ρ =

∏
k ρk and write fW (x) = ρfV (x) = ρVLσ (VL−1 . . . σ (V1x) . . .). Notice that the two

networks – fW (x) and ρfV (x) – are equivalent reparameterizations of the same function (if ρ =
∏

k ρk) but
their optimization generally differ. We define fn := fV (xn).

3We choose the Frobenius norm here.
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Figure 1: An illustration of two parametrizations of fW (x). In (a)we decompose each layer’s weightmatrixWi

into its norm ρi and its normalized version Vi. In (b) we normalize each layer except for the top layer’s matrix
WL that is decomposed into a global ρ and the last layer VL. Normalizing the weight matrices, as weight
normalization (equivalent to LN) does, is different from Batch Normalization, though both normalization
techniques capture the relevant property of normalization – to make the dot product invariant to scale.

We adopt in our definition the convention that the norm ρj of the convolutional layers is the norm of their
filters and not the norm of their associated Toeplitz matrices. The reason is that this what our novel bounds
for CNNs state (see also section 3.3 in [42] and [43]). The total ρ calculated in this way is the quantity that
enters the generalization bounds of section 4.
In practice, certain normalization techniques are used in order to train neural networks. This is usually
performed using either batch normalization (BN) or, less frequently, weight normalization (WN). BN consists
of standardizing the output of the units in each layer to have zeromean and unit variance wrt training set. WN
normalizes the weight matrices (section 10 in [4]). In our analysis, we model normalization by normalizing
the weight matrices, using a Lagrange multiplier (LM) term added to the loss function. This approach is
equivalent to WN.
In the presence of normalization, we assume that all layers are normalized, except for the last one, via the
added Lagrange multiplier. Thus, the weight matrices {Vk}Lk=1 are constrained by the Lagrange multiplier
term to be close to, and eventually converge to, unit normmatrices (in fact to fixed normmatrices); notice that
normalizing VL and then multiplying the output by ρ, is equivalent to lettingWL = ρVL be unnormalized.
Thus, fV is the network that at convergence has L− 1 normalized layers (see Figure 1).
We can write the Lagrangian corresponding to the minimization of the regularized loss function under the
constraint ∥Vk∥2 = 1 in the following manner

LS(ρ, {Vk}Lk=1) : =
1

N

∑
n

(ρfn − yn)
2 +

L∑
k=1

νk(∥Vk∥2 − 1) + λρ2

=
1

N

∑
n

(1− ρf̄n)
2 +

L∑
k=1

νk(∥Vk∥2 − 1) + λρ2,

(1)

where νk are the Lagrange multipliers and λ > 0 is a predefined parameter.

Separability and Margins. Two important aspects of classification are separability and margins. For a given
sample (x, y) (train or test sample) and model fW , we say that fW correctly classifies x, if f̄n = ynfn > 0.
In addition, for a given dataset S = {(xn, yn)}Nn=1, separability is defined as the condition in which all
training samples are classified correctly, ∀ n ∈ [N ] : f̄n > 0. Furthermore, when∑N

n=1 f̄n > 0, we say
that average separability is satisfied. The minimum of LS for λ = 0 is usually zero under our assumption of
overparametrization. This corresponds to separability.
Notice that if fW is a zero loss solution of the regression problem, then ∀ n : fW (xn) = yn, which is also
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equivalent to ρfn = yn, where we call ynfn = f̄n the margin4 for xn. By multiplying both sides of this equation
by yn, and summing both sides over n ∈ [N ], we obtain that ρ∑n f̄n = N . Thus, the norm ρ of a minimizer
is inversely proportional to its average margin µ in the limit of λ = 0, with µ = 1

N

∑
n f̄n. It is also useful to

define the margin variance σ2 = M − µ2 with M = 1
N

∑
n f̄

2
n. Notice that M = 1

N

∑
n f̄

2
n = σ2 + µ2 and that

both M and σ2 are not negative.

Interpolation and Quasi-interpolation. Assume that the weights Vk are normalized at convergence. Then
Lemma 1. For λ = 0 there are solutions that interpolate all data points with the same margin and achieve zero loss.
For λ > 0 there are no solutions that have the same margins and interpolate. However there are solutions with the same
margins that quasi-interpolate and are critical points of the gradient.

Proof. Consider the loss LS = 1
N

∑
n(1− ρf̄n)

2 + λρ2 = 1− 2ρµ+ ρ2M + λρ2. For λ = 0, a zero of the loss
LS = 0 implies ∀ n ∈ [N ] : µ = f̄n and µ = 1

ρ . However, for λ > 0 the assumption that all f̄n are equal yields
M = µ2 and thus LS = ρ2µ2 − 2ρµ + (1 + λρ2). Setting LS = 0 gives a second order equation in ρ which
does not have real-valued solutions for λ > 0. Thus in the presence of regularization, there exist no solutions
that have the same margin for all points and reach zero empirical loss. However, solutions that have the same
margin for all points and correspond to zero gradient w.r.t. ρ exist. To see this, assume σ = 0, setting the
gradient of LS w.r.t. ρ equal to zero, yielding ρµ2 − µ+ λρ = 0. This gives ρ = µ

µ2+λ . This solution yields
ρµ < 1, which corresponds to non-interpolating solutions.
Figure 8 shows that the margins (which are never interpolating; interpolation is quivalent to ρynf(xn) <
1, ∀n) tend to become equal to each other as predicted from the lemma during convergence.

Experiments We performed binary classification experiments using the standard CIFAR10 dataset [44].
Image samples with class labels 1 and 2 were extracted for the binary classification task. The total number of
training and test data points are 10000 and 2000, respectively. The model architecture in Fig. 1b contains four
convolutional layers, two fully connected layers with hidden sizes 1024 and 2. The number of channels for
the four convolutional layers are 32, 64, 128 and 128, the filter size is 3 × 3. The first fully connected layer
has 3200× 1024 = 3, 276, 800weights and the very last layer has 1024× 2 = 2048weights. At the top layer
of our model, there is a learnable parameter ρ (Fig. 1b). In our experiments, instead of using Lagrange
multipliers, we used the equivalent (see proof of the equivalence [2])Weight Normalization (WN) algorithm,
freezing the weights of the WN parameter “g” [45] and normalizing the {Vk}L−1

k=1 matrices at each layer w.r.t.
their Frobenius norm, while the top layer’s norm is denoted by ρ and is the only parameter entering in the
regularization term (see Equation (11)).

3.3 Landscape of the empirical risk
As a next step, we establish key properties of the loss landscape. The landscape of the empirical loss contains
a set of degenerate zero-loss global minima (for λ = 0) that under certain overparametrization assumptions
may be connected in a single zero-loss degenerate valley for ρ ≥ ρ0. Figure 2 shows a landscape which has a
saddle for ρ = 0 and then goes to zero loss (zero crossing level, that is the coastline) for different values of ρ
(look at the boundary of the mountain). As we will see in our analysis of the gradient flow, the descent from
ρ = 0 can encounter local minima and saddles with non-zero loss. Furthermore, even though the valley of
zero loss may be connected, the point of absolute minimum ρ may be unreachable by gradient flow from
another point of zero loss even in the presence of λ > 0, because of the possible non-convex profile of the
coastline (see inset of Figure 2).

4Notice that the term “margin” is usually defined as minn∈[N ] f̄n. Instead, we use the term “margin for xn” to distinguish our
definition from the usual one.
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If we assume overparametrized networks with d ≫ n, where d is the number of parameters and N is
the number of data points [10] proved that the global minima of the unregularized loss function LS =∑N

i=1(fW (xi)− yi)
2 are highly degenerate5 with dimension d−N .

Theorem 1 ([46], informal). We assume an overparametrized neural network fW with smooth ReLU activation
functions and square loss. Then the minimizers W ∗ achieve zero loss and are highly degenerate with dimension d−N .

Furthermore, for “large” overparametrization, all the global minima – associated to interpolating solutions –
are connected within a unique, large valley. The argument is based on Theorem 5.1 of [47]:
Theorem 2 ([47], informal). If the first layer of the network has at least 2N neurons, where N is the number of
training data and if the number of neurons in each subsequent layer decreases, then every sublevel set of the loss is
connected.

In particular, the theorem implies that zero-square-loss minima with different values of ρ are connected. A connected
single valley of zero loss does not however guarantee that SGD with WD will converge to the global minimum
which is now > 0, independently of initial conditions.
For large ρ we expect many solutions. The existence of several solutions for large ρ is based on the following
intuition: the last linear layer is enough – if the layer before the linear classifier has more units than the
number of training points – to provide solutions for a given set of random weights in the previous layers
(for large ρ and small fi). This also means that the intermediate layers do not need to change much under
GD in the iterations immediately after initialization. The emerging picture is a landscape in which there
are no zero-loss minima for ρ smaller than a certain minimum ρ, which is network and data-dependent.
With increasing ρ from ρ = 0 there will be a continuous set of zero square-loss degenerate minima with the
minimizer representing an interpolating (for λ = 0) or almost interpolating solution (for λ > 0). We expect
that λ > 0 results in a “pull” towards the minimum ρ0 within the local degenerate minimum of the loss.

Landscape for λ > 0 In the case of λρ2 > 0 the landscape may become become a Morse-Bott or Morse
function with shallow almost zero-loss minima. The question is open because the regularizer is not sum of
squares (Yaim Cooper, personal communication).

3.4 Gradient Dynamics
3.4.1 Gradient Flow Equations

The gradient flow equations are as follows (see also [8])

ρ̇ = −∂LS(ρ, {Vk}Lk=1)

∂ρ
=

2

N

∑
n

(1− ρf̄n)f̄n − 2λρ,

V̇k = −∂LS(ρ, {Vk}Lk=1)

∂Vk
=

2

N

∑
n

(1− ρf̄n)ρ
∂f̄n
∂Vk

− 2νkVk.

(2)

In the second equation we can use the unit norm constraint on the ∥Vk∥ to determine the Lagrange multipliers
νk, using the following structural property of the gradient:
Lemma 2 (Lemma 2.1 of [48]). Let fW (x) be a ReLUneural network, fW (x) = WLσ(WL−1 . . . σ(W1x)) : Rd → R.
Then, we can write:

∀x ∈ Rd :
∑
i,j

∂fW (x)

∂W i,j
k

W i,j
k =

〈
Wk,

∂fW (x)

∂Wk

〉
= fW (x). (3)

5This result is also what one expects from Bezout theorem for a deep polynomial network. As mentioned in Terry Tao’s blog “from
the general “soft” theory of algebraic geometry, we know that the algebraic set V is a union of finitely many algebraic varieties, each of
dimension at least d−N , with none of these components contained in any other. In particular, in the under-determined caseN < d,
there are no zero-dimensional components of V , and thus V is either empty or infinite”(see references in [46]).

7



Figure 2: A speculative view of the landscape of the unregularized loss – that is for λ = 0. Think of the loss
as the mountain emerging from the water with zero-loss being the water level. ρ is the radial distance from
the center of the mountain as shown in the inset, whereas the Vk can be thought as multidimensional angles
in this “polar” coordinate system. There are global degenerate valleys for ρ ≥ ρ0 with V1 and V2 weights of
unit norm. The coastline of the loss marks the boundary of the zero loss degenerate minimum where L = 0
in the high-dimensional space of ρ and Vk ∀k = 1, · · · , L. The degenerate global minimum is shown here
as a connected valley outside the coastline. The red arrow marks the minimum loss with minimum ρ. Notice
that, depending on the shape of the multidimensional valley, regularization with a term λρ2 added to the
loss, biases the solution towards small ρ but does not guarantee convergence to the minimum ρ solution,
unlike the case of a linear network.

The constraint ∥Vk∥2 = 1 implies using the lemma above ∂∥Vk∥2

∂t = V T
k V̇k = 0, which gives

νk =
1

N

∑
n

(ρf̄n − ρ2f2
n) =

1

N

∑
n

ρf̄n(1− ρfn). (4)

Thus the gradient flow is the following dynamical system

ρ̇ =
2

N

[∑
n

f̄n −
∑
n

ρ(f̄n)
2

]
− 2λρ and V̇k =

2

N
ρ
∑
n

[(
1− ρf̄n

)(
−Vkf̄n +

∂f̄n
∂Vk

)]
. (5)

In particular, we can also write
ρ̇ = 2(µ− ρ(M + λ)), (6)

hence, at critical points (when ρ̇ = 0 and V̇k = 0), we have using the definitions of µ andM ,

ρ = ρeq :=
1
N

∑
n f̄n

λ+ 1
N

∑
n f̄

2
n

=
µ

M + λ
. (7)

Thus the gap to interpolation due to λ > 0 is ϵ = (ρλ=0 − ρλ)µ = 1− µ
M+λµwhich gives

ϵ = 1− µ2

µ2 + σ2 + λ
=

σ2 + λ

µ2 + σ2 + λ
. (8)
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Notice that since the Vk are bounded functions they must take their maximum and minimum values on their
compact domain – the sphere – because of the extremum value theorem. Also notice that for normalized Vk,
V T
k V̇k = 0 always, that is for normalized Vk the change in Vk is always orthogonal to Vk, that is Vk can only

rotate. If V̇k = 0 then the weights Vk are given by6

Vk =

∑
n ℓn

∂fn
∂Vk∑

ℓnfn
, (9)

where ℓn = 1− ρf̄n.

Convergence. A favorable property of optimization of the square loss is the convergence of the relevant
parameters. With gradient descent, the loss function cannot increase, while the trainable parameters may
potentially diverge. A typical scenario of this kind happens with cross-entropy minimization, where the
weights typically tend to infinity. In light of the theorems in Section 3.3, we could hypothetically think of
training dynamics in which the loss function’s value L(ρ, {Vk}Lk=1) decreases while ρ oscillates periodically
within some interval. As we show next, this is impossible when the loss function’s value converges to zero.
Lemma 3. Let fW (x) = ρfV (x) be a neural network and λ = 0. Assume that during training time, we have
limt→∞ L(ρ, {Vk}Lk=1) = 0 and ∀ k ∈ [L] : ∥Vk∥ = 1. Then, ρ and Vk converge (i.e., ρ̇→ 0 and V̇k → 0).

Proof. Note that if limt→∞ L(ρ, {Vk}Lk=1) = 0, then, for all n ∈ [N ], we have: (ρfn − yn)
2 → 0. In particular,

ρfn → yn and ρf̄n → 1. Hence, we conclude that µρ → 1. Therefore, by Lemma 4, ρρ̇ → 0. We note that
ρ→ 0would imply ρfn → 0which contradicts L(ρ, {Vk}Lk=1)→ 0, since the labels yn are non-zero. Therefore,
we conclude that ρ̇→ 0. To see why V̇k → 0, we recall that

V̇k =
2

N
ρ
∑
n

[(
1− ρf̄n

)(
−Vkf̄n +

∂f̄n
∂Vk

)]
. (10)

We note that ∥Vk∥ = 1, |f̄n| = 1 and ∂f̄n
∂Vk

is bounded (assuming that ∀ n ∈ [N ] : ∥xn∥ ≤ 1 and ∀ k ∈
[L] : ∥Vk∥ = 1). Hence, since ρ converges, ρf̄n → 1, implying (for λ = 0) V̇k → 0.
So far, we have assumed convergence of GF, or GD or SGD to zero loss. Convergence does not seem too far
fetched given overparametrization and the associated high degeneracy of the global minima (see 3.3 and
theorems there). Proofs of convergence of descent methods have been however lacking until a recent paper
[49] presented a new criterion for convergence of gradient descent and used to show that gradient descent
with proper initialization converges to a global minimum. The result has technical limitations that are likely
to be lifted in the future: it assumes that the activation function is smooth, that the input dimension is greater
than or equal to the number of data points and that the descent method is GF or GD.

3.5 Qualitative Dynamics
We consider the dynamics of model b) in Figure 1. During training the norm of each layer weight matrix
is kept constant by the Lagrange multiplier constraint which is applied to all layers but the last one, Thus
leaving ρ at the top to change depending on the dynamics. Recall that ∀ n ∈ [N ] : 0 ≤ |f̄n| ≤ 1 because
the assumption ∥x∥ ≤ 1, yields ∥f(x)∥ ≤ 1 by taking into account the definition of ReLUs and the fact that
matrix norms are sub-multiplicative. Depending on the number of layers, the maximum margin that the
network can achieve for a given dataset is usually much smaller than the upper bound 1, because the weight
matrices have unit norm and the bound≤ 1 is conservative. Thus, in order to guarantee interpolation, namely,
ρfnyn = 1, ρmust be significantly larger than 1. For instance, in the experiments plotted in this paper, the
maximal f̄n is ≈ 0.002 and thus the ρ needed for interpolation (for λ = 0) is in the order of 500. We assume

6This overdetermined system of equations – with as many equations as weights – can also be used to reconstruct the training set
from the Vk , the yn and the fn.
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then that for a given dataset there is a maximal value of ynfn that allows interpolation. Correspondingly,
there is a minimum value of ρ that we call, as mentioned earlier, ρ0.
We now provide some intuition for the dynamics of the model. Notice that ρ(t) = 0 and fV (x) = 0 (if all
weights are zero) is a critical unstable point. A small perturbation will either result in ρ̇ < 0 with ρ going
back to zero or in ρ growing if the average margin is just positive, that is µ > λρ > 0.

Small ρ initialization. First, we consider the case where the neural network is initialized with a smallish ρ,
that is ρ < ρ0. Assume then that at some time t, µ > 0, that is average separability holds. Notice that if the
fn were zero-mean, random variables, there would be a 50% chance for average separability to hold. Then
Equation (5) shows that ρ̇ > 0. If full separability takes place, that is ∀ n : fn > 0, then ρ̇ remains positive at
least until ρ = 1. This is because Equation (5) implies that ρ̇ ≥ 2(µ− ρµ) since M ≤ µ. In general, assuming
eventual convergence, ρmay grow non-monotonically, that is there may oscillations in ρ for “short” intervals,
until it converges to ρ0.
To see this, consider the following lemma that gives a representation of the loss function in terms of ρ, ρ̇ and
µ.
Lemma 4. Let fW (x) = ρfV (x) be a neural network, with ∀ k ∈ [L] : ∥Vk∥ = 1. The square loss can be written as
LS(ρ, {Vk}Lk=1) = 1− ρ( 12 ρ̇+ µ).

Proof. First, we consider that

LS(ρ, {Vk}Lk=1) =
1

N

∑
n

(ρfn − yn)
2 +

L∑
k=1

νk(∥Vk∥2 − 1) + λρ2

=
1

N
(ρ2f2

n − 2ynρfn + y2n) + λρ2

= 1− 2ρµ+ ρ2M + λρ2,

(11)

where the second equations follows from ∀ k ∈ [L] : ∥Vk∥ = 1 and the third from y2n = 1, using the previous
definitions µ = 1

N

∑
n f̄n andM = 1

N

∑
n f̄

2
n. On the other hand, by Equation (6), ρ̇ = 2µ−2ρM −2λρwhich

gives 2ρM = 2µ− 2λρ− ρ̇. Therefore, we conclude that LS(ρ, {Vk}Lk=1) = 1− 1
2ρρ̇− ρµ = 1− ρ( 12 ρ̇+ µ) as

desired.
Following this lemma, if ρ̇ becomes negative during training, then, the average margin µ must increase since
GD cannot increase but only decrease L. In particular, this implies that ρ̇ cannot be negative for long periods
of time. Notice that short periods of decreasing ρ are “good” since they increase the average margin!
If ρ̇ turns negative, it means that it has crossed ρ̇ = 0. This may be a critical point for the system if the values
of Vk corresponding to V̇k = 0 are compatible (since the matrices {Vk}Lk=1 determine the value of f̄n). We
assume that this critical point – either a local minimum or a saddle – can be avoided by the randomness of
SGD or by an algorithm that restarts optimization when a critical point is reached for which L > 0.
Thus, ρ grows (non-monotonically) until it reaches an equilibrium value, close to ρ0. Recall that for λ = 0
this corresponds to a degenerate global minimum L = 0, usually resulting in a large attractive basin in the
loss landscape. For λ = 0, a zero value of the loss (L = 0) implies interpolation: thus all the fn have the
same value, that is all the margins are the same.

Large ρ initialization. If we initialize a network with large norm ρ > ρ0, Equation (1) shows that ρ̇ < 0.
This implies that the norm of the network will decreases until eventually an equilibrium is reached. In fact
since ρ≫ 1 it is likely that there exists an interpolating (or near interpolating) solution with ρ that is very
close to the initialization. In fact, for large ρ it is usually empirically possible to find a set of weights VL such
that ρf̄n ≈ 1. To understand why this may be true, recall that if there are at least N units in the top layer of
the network (layer L) with given activities and ρ≫ ρ0 there exist values of VL that yield interpolation due to
Theorem 2. In other words, it is easy for the network to interpolate with small values f̄n. These large ρ, small
f̄n solutions are reminiscent of the Neural Tangent Kernel (NTK) solutions [24], where the parameters do
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not move too far from their initialization. A formal version of the same argument is based on the following
result.
We now assume that the network in the absence of weight decay has converged to an interpolating solution
Lemma 5. Let fV be a neural network with weights {Vk}Lk=1, such that, ∀ n ∈ [N ] : ρf̄n = ρµ∗ = 1. Further
assume that the classifier VL and the last layer features h are aligned, ie, yn⟨VL, h(xn)⟩ = ||h(xn)||2, where the vector
h denotes the activities of the units in the last layer. Then, perturbing VL into another unit-norm vector V ′

L ∈ Rp, such
that, V T

L V ′
L = α ∈ (0, 1) yields a neural network f̂(x) = ⟨V ′

L, h(x)⟩ with the property that ρ
α f̂ is an interpolating

solution, corresponding to a critical point of the gradient but with a larger ρ.

Proof. Consider the margins of the network f̂(x) = ⟨V ′
L, h(x)⟩, we have that ¯̂

fn = yn⟨V ′
L, h(xn)⟩. Since

the classifier weights and the last layer features are aligned (as it may happen for λ → 0), we have that
ynh(xn) = ||h(xn)||×VL. This means ¯̂

fn = ||h(xn)||×⟨V ′
L, VL⟩. We also have from the interpolating condition

that ρf̄n = ρµ∗ = 1, which means ||h(xn)|| = 1
ρ . Putting all this together, we have ρ

α
¯̂
fn = 1, which concludes

the proof.
Thus if a network exists providing an interpolating solution with a minimum ρ and VL ∝ h, there exist
networks, that differ only in the last VL layer, that are also interpolating but with larger ρ. As a consequence
there is a continuum of solutions that differ only in the weights VL of the last layer.
Of course there may be interpolating solutions corresponding to different sets of weights in layers below L,
to which the above statement does not apply. These observations suggest that there is a valley of minimizers
for increasing ρ, starting from a zero-loss minimizer which have the Neural Collapse property (see section 5).
In Figure 3 we show the dynamics of ρ alongside train loss and test error. We show results with and without
Weight Decay in the top and bottom rows of Figure 3 respectively. LS decreases with µ increasing and σ
decreasing. The figures show that in our experiments the large margins of some of the data points decrease
during GD, contributing to a decrease in σ. Furthermore Equation (11) suggests that for small ρ, the term
dominating the decrease in LS is −2ρµ. For larger ρ, the term ρ2M = ρ2(σ2 + µ2) becomes important:
eventually LS decreases because σ2 decreases. The regularization term, for standard small values of λ, is
relevant only in the final phase, when ρ is in the order of ρ0. For λ = 0 the loss at the global equilibrium
(which happens at ρ = ρ0) is LS = 0 (since µ = 1

ρ0
,M = µ2, σ2 = 0).

To sum up, starting from small initialization, gradient techniques will explore critical points with ρ growing
from zero. Thus quasi-interpolating solutions with small ρ (corresponding to large margin solutions) may be
found before the many large ρ quasi-interpolating solutions which have worse margins (see Figure 3, upper
and lower row). This dynamics can take place even in the absence of regularization; however, λ > 0 makes the
process more robust and bias it towards small ρ.

4 Generalization: Rademacher complexity of convolutional layers
4.1 Classical Rademacher bounds
In this section we analyze the test performance of the learned neural network. Following the standard
learning setting, we assume that there is some underlying distribution P of labeled samples (x, y) and the
training data S = {(xi, yi)}Ni=1 consists of N i.i.d. samples from P . The model fW is assumed to perfectly fit
the training samples, i.e., fW (xi) = yi = ±1.
We would like to upper bound the classification error err(fW ) := E(x,y)∼P [I[sign(fW (x)) ̸= y]] of the learned
function fW in terms of the number of samples N and the norm ρ of fW .
This analysis is based on the following data-dependent measure of the complexity of a class of functions.
Definition 1 (Rademacher Complexity). Let H be a set of real-valued functions h : X → R defined over a set X .
Given a fixed sample S ∈ Xm, the empirical Rademacher complexity of H is defined as follows:

RS(H) :=
2

m
Eσ

[
sup
h∈H

∣∣∣ m∑
i=1

σih(xi)
∣∣∣] .
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Figure 3: Training dynamics of ρ, of the training loss and of the test error over 1000 epochs with different
initialization (0.9) in the first column and (1.3) in the second column.The number of channels for the four
convolutional layers (Conv1∼Conv4) are 32, 64, 128 and 128, the filter size is 3×3, the hidden sizes of the last
two fully connected layers (FC1 and FC2) are 1024 and 2, respectively. The first row in the figure is with
Weight Decay λ = 0.001, and the second row is with Weight Decay λ = 0. The network was trained with
Cosine Annealing learning rate scheduler (with initial learning rate η = 0.03, ending with η = 0.0299).

The expectation is taken over σ = (σ1, . . . , σm), where, σi ∈ {±1} are i.i.d. and uniformly distributed samples.

The Rademacher complexitymeasures the ability of a class of functions to fit noise. The empirical Rademacher
complexity has the added advantage that it is data-dependent and can be measured from finite samples.
Theorem 3. Let P be a distribution over Rd × {±1}. Let F = {fW |

∏L
i=1 ∥Wi∥ ≤ 1}. Let S = {(xi, yi)}Ni=1 be a

dataset of i.i.d. samples selected from P . Then, with probability at least 1− δ over the selection of S, for any fW that
perfectly fits the data (i.e., fW (xi) = yi), we have

errP (fW ) ≤ 2(ρ+ 1) · RS(F) + 3

√
log(2(ρ+ 1)2/δ)

2N
(12)

Proof. Let t ∈ N ∪ {0} and Gt = {fW |
∏L

i=1 ∥Wi∥2 ∈ [t, t+ 1]}. We consider the ramp loss function

ℓramp(y, y
′) =


1, if yy′ ≤ 0,

1− yy′, if 0 ≤ yy′ ≤ 1,

0, if yy′ ≥ 1.
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By (cf. [50], Theorem 3.3), for any t ∈ N ∪ {0}, with probability at least 1− δ
t(t+1) , for any function fW ∈ Gt,

we have

E(x,y)[ℓramp(fW (x), y)] ≤ 1

N

N∑
i=1

ℓramp(fW (xi), yi) + 2RS(Gt) + 3

√
log(2(t+ 1)2/δ)

2N
. (13)

We note that for any function fW for which fW (xi) = yi = ±1, we have ℓramp(fW (xi), yi) = 0. In addition,
for any function fW and pair (x, y), we have ℓramp(fW (x), y) ≥ I[sign(fW (x)) ̸= y]. Therefore, we conclude
that with probability at least 1− δ

t(t+1) , for any function fW ∈ Gt, we have

errP (fW ) ≤ 2RS(Gt) + 3

√
log(2(t+ 1)2/δ)

2N
. (14)

We notice that by the homogeneity of ReLU neural networks, we haveRS(Gt) ≤ (t+ 1) · RS(F). By union
bound over all t ∈ N ∪ {0}, (14) holds uniformly for all t ∈ N ∪ {0} and fW ∈ Gt with probability at least
1− δ. For each fW with∏L

i=1 ∥Wi∥2 = ρ we can apply the bound with t = ⌊ρ⌋ since fW ∈ Gt, and obtain the
desired bound,

errP (fW ) ≤ 2(t+ 1) · RS(Gt) + 3

√
log(2(t+ 1)2/δ)

2N

≤ 2(ρ+ 1) · RS(F) + 3

√
log(2(ρ+ 1)2/δ)

2N

(15)

The above theorem provides an upper bound on the classification error of the trained network fW that
perfectly fits the training samples. The upper bound is decomposed into two main terms. The first term is
proportional to the norm of the trained model ρ and the Rademacher complexity of F which is the set of the
normalized neural networks and the second term scales as

√
log(ρ/δ)/N . As shown in Theorem 1 in [51],

this term is upper bounded byRS(F) ≤ (
√
2 log(2)L+ 1)/

√
(N), assuming that the samples are taken from

the d-dimensional ball Bd of radius 1. The overall bound is then (assuming zero training error)

errP (fW ) ≤
2(ρ+ 1)(

√
2 log(2)L+ 1)√
N

+ 3

√
log(2(log(ρ) + 1)2/δ)

2N
. (16)

We note that while the mentioned bound on RN (F) depends on the architecture of the network it does not
depend in an explicit way on the training set. However, as shown in Equation 6 in [51], the bound may be
improved further if the matrices’ stable rank is low, which happens with small rank of the weight matrices.
In practice, the value of RN (F) depends on the network architecture (e.g. convolutional) but also on the
underlying optimization (e.g. L2 vs L1) and on the data (e.g. rank).

4.2 Relative Generalization
We now consider two solutions with zero empirical loss of the square loss regression problem obtained
with the same ReLU deep network and corresponding to two different minima with two different ρ. Let us
call them ga(x) = ρaf

a(x) and gb(x) = ρbf
b(x). Using the notation of this paper, the functions fa and fb

correspond to networks with normalized weight matrices at each layer.
Let us assume that ρa < ρb.
We now use Equation (16) and the fact that the empirical L̂γ for both functions is the same to write L0(f

a) =

L0(F
a) ≤ c1ρaRN (F̃) + c2

√
ln( 1

δ )

2N and L0(f
b) = L0(F

b) ≤ c1ρbRN (F̃) + c2

√
ln( 1

δ )

2N . The bounds have the form

L0(f
a) ≤ Aρa + ϵ, (17)

13



and
L0(f

b) ≤ Aρb + ϵ. (18)
Thus the upper bound for the expected error L0(f

a) is better than the bound for L0(f
b). Of course this is just

an upper bound. As a consequence this result does not guarantee that a solution with smaller ρ will always
have a smaller expected error than a solution with larger ρ.
Notice that the this generalization claim is just a relative claim about different solutions obtained with the
same network trained on the same training set.
Figure 4 shows clearly that increasing the percentage of random labels increases the ρ that is needed to
maintain interpolation – thus decreasing the margin – and that at the same time the test error increases,
as expected. This monotonic relation between margin and accuracy at test seems to break down for small
differences in margin as shown in Figure 5, though the significance of the effect is unclear. Of course this
kind of behavior is not inconsistent with an upper bound.

Figure 4: Mean 1/ρ and test error results over 10 runs for binary classification on CIFAR10 trained with
Lagrange multiplier and different percentages of random labels (r = 20%, 40%, 60% and 80%), initialization
scale 1 and weight decay 0.001. As mentioned in the text the norm of the convolutional layers is just the norm
of the filters.(Note that this network fails to get convergence with 100% random labels.)

4.3 Novel bounds for Sparse Networks
In section 4.1 we describe generic bounds on the Rademacher complexity of deep neural networks. In these
cases, ρ measures the product of the Frobenius norms of the network’s weight matrices in each layer. For
convolutional networks, however, the operation in each layer is computed with a kernel, described by the
vector w, that acts on each patch of the input separately. Therefore, a convolutional layer is represented by a
Toeplitz matrix W , whose blocks are each given by w. A naive application of (16) to convolutional networks
give a large bound, where the Frobenius norm of the Toeplitz matrix is equivalent to norm of the kernel
multiplied by the number of patches.
In this section we provide an informal analysis of the Rademacher complexity, showing that it can be reduced
by exploiting the first one of the two properties of convolutional layers: (a) the locality of the convolutional
kernels and (b) weight sharing. These properties allow us to bound the Rademacher complexity by taking
the products of the norms of the kernel w instead of the norm of the associated Toeplitz matrix W . Here we
outline the results with more precise statements and proofs to be published separately.
We consider the case of 1-dimensional convolutional networks with non-overlapping patches and one channel
per layer. For simplicity, we assume that the input of the network lies in Rd, with d = 2L and the stride
and the kernel of each layer are 2. The analysis can be easily extended to kernels of different sizes. This
means that the network h(x) can be represented as a binary tree, where the output neuron is computed as
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Figure 5: Scatter plots for 1/ρ and mean test accuracy based on 10 runs for binary classification on CIFAR10
using Lagrange multiplier normalization (LN), square loss and Weight Decay (left) and without Weight
Decay (right). In the left figure, the network was trained with different initialization scales (init. = [0.9, 1,
1.2, 1.3]) and with weight decay (λ = 1e− 3), while in the right figure, the network was trained with init.
= [0.8, 0.9, 1, 1.3, 1.5] and no weight decay (λ = 0). The horizontal and vertical error bars correspond to
the standard deviations of 1/ρ and mean test accuracy computed over 10 runs for different initializations,
while the square dots correspond to the mean values. When λ > 0, the coefficient (R2), p-value and slope
for linear regression between 1/ρ and mean test accuracy are: R2 = 0.94, p-value = 0.031, slope = -18.968;
When λ = 0, the coefficient R2 = 0.004, p-value = 0.92 and the slope = -2.915.

WL · σ(vL1 (x), vL2 (x)), vL1 (x) = WL−1 · σ(vL−1
1 (x), vL−1

2 (x)) and vL2 (x) = WL−1 · σ(vL−1
3 (x), vL−1

4 (x)) and so
on. This means that we can write the i’th row of the Toeplitz matrix of the l’th layer (0, . . . , 0,−W l−, 0 . . . , 0),
whereW l appears on the 2i − 1 and 2i coordinates. We define a setH of neural networks of this form, where
each layer is followed by a ReLU activation function and∏L

l=1 W
l ≤ ρ.

Theorem 4. LetH be the set of binary-tree structured neural networks over Rd, with d = 2L for some natural number
L. Let X = {x1, . . . , xm} ⊂ Rd be a set of samples. Then,

RX(H) ≤
2Lρ

√∑m
i=1 ∥xi∥2
m

. (19)

Proof sketch. First we rewrite the Rademacher complexity in the following manner:

RX (H) = Eϵ sup
h∈H
| 1
m

m∑
i=1

ϵi · h(xi)|

= Eϵ sup
h∈H

1

m
|

m∑
i=1

ϵi ·WL · σ(v1(x), v2(x))|

= Eϵ sup
h∈H

1

m

√√√√| m∑
i=1

ϵi ·WL · σ(v1(x), v2(x))|2.

(20)
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Next, by the proof of Lem. 1 in [51], we obtain that

RX (H) ≤ 2Eϵ sup
h∈H

1

m

√√√√∥WL∥2 · ∥
m∑
i=1

ϵi(v1(x), v2(x))∥2

= Eϵ sup
h∈H

1

m

√√√√∥WL∥2 ·
2∑

j=1

∥
m∑
i=1

ϵivj(xi)∥2.

(21)

By applying this peeling process L times, we obtain the following inequality:

RX (H) ≤ 2L−1Eϵ sup
h∈H

1

m

√√√√ L∏
l=1

∥W l∥2 ·
d∑

j=1

∥
m∑
i=1

ϵixij∥2

= 2L−1Eϵ sup
h∈H

1

m

√√√√ L∏
l=1

∥W l∥2 · ∥
m∑
i=1

ϵixi∥2

≤
2L−1ρEϵ∥

∑m
i=1 ϵixi∥

m

≤
2L−1ρ

√∑m
i=1 ∥xi∥2

m
,

(22)

where the factor 2L−1 is obtained because the last layer is linear (see [52]). We note that a better bound can
achieved when using the reduction introduced in [51] which would give a factor of

√
2 log(2)L+ 1 instead

of 2L−1.
Thus one ends up with a bound scaling as the product of the norms of the kernel at each layer. The constants
may change depending on the architecture, the number of patches, the size of the patches and their overlap.
This special non-overlapping case can be extended to the general convolutional case. In fact a proof of the
following conjecture will be provided in [53]
Conjecture 1. If a convolutional layer has overlap among its patches then the non-overlap bound

Rm(HL) ≤ 2L−1ρ∥x∥, (23)

where ρ is the product of the norms of the kernels at each layer becomes

Rm(HL) ≤ 2L−1ρ

√
K

K −O
∥x∥, (24)

whereK is the size of the kernel (number of components) and O is the size of the overlap.

Sketch proof Call P the number of patches and O the overlap. With no overlap then PK = D where D is the
dimensionality of the input to the layer. In general P = D−O

K−O . It follows that a layer with the most overlap
can add at most < ∥x∥

√
K to the bound. Notice that we assume that each component of xi averaged across i

will have norm
√

1
d .

The bound is surprisingly small In this section we have derived bounds for convolutional networks that
may potentially be orders of magnitude smaller than equivalent similar bounds for dense networks. We note
that a naive application of Corollary 2 in [29] for the network we used in Theorem 4 would require treating
the network as if it were a dense network. In this case the bound would be proportional to the product of the
norms of each of the Toeplitz matrices in the network individually.
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In this case, the total bound becomes

2L
√∏L

l=1(2
l)ρ
√∑m

i=1 ∥xi∥2

m
=

20.25L
2+1.25Lρ

√∑m
i=1 ∥xi∥2

m
, (25)

which is much larger than the boundwe obtained earlier. The key point is that the Rademacher bounds achievable
for sparse networks are much smaller than for dense networks. This suggests that convolutional network with local
kernels may generalize much better than dense network, which is consistent in spiritwith approximation
theory results (compositionally sparse target functions can be approximated by sparse networks without
incurring in the curse of dimensionality, whereas generic functions cannot be approximated by dense networks
without the curse). They also confirm the empirical success of convolutional networks compared to densely
connected networks.
It is also important to observe that the bounds we obtained may be non-vacuous in the overparametrized
case, unlike VC bounds which depend on the number of weights and are therefore always vacuous in over-
parametrized situations. With our norm-based bounds it is in principle possible to have overparametrization
and interpolation simultaneously with non-vacuous generalization bounds: this is suggested by Figure 6. Figure 7
shows the case of a 3-layer convolutional network with a total number of parameters of ≈ 20K.

Figure 6: Product norm (ρ) and test error with respect to different training data sizes (N) for the six-layer
model trained with LM and square loss. The initialization scale is 0.1, weight decay λ = 10−3, no biases, the
initial learning rate is 0.03 with cosine annealing scheduler; we used the SGD optimizer (momentum = 0.9),
test data size = 2000 in a binary classification task on CIFAR10 dataset. (a) The table shows the product
norm ρ, mean training errors, mean test errors (average over the last 100 epochs), and generalization upper
bound for different N . (b) A bar plot for the generalization gap for different N . (c) Generalization error
upper bound is proportional to ( ρ√

N
). The bounds are vacuous but “only” by an order of magnitude, while

other bounds based on the number of parameters (here 3519335) are typically much looser.

5 Neural Collapse
A recent paper [12] described four empirical properties of the terminal phase of training (TPT) deep networks,
using the cross-entropy loss function. TPT begins at the epoch where training error first vanishes. During
TPT, the training error stays effectively zero, while training loss progressively decreases. Direct empirical
measurements expose an inductive bias they call Neural Collapse (NC), involving four interconnected
phenomena. Informally, (NC1) Cross-example within-class variability of last-layer training activations
collapses to zero, as the individual activations themselves collapse to their class means. (NC2) The class
means collapse to the vertices of a simplex equiangular tight frame (ETF). (NC3) Up to rescaling, the last-layer
classifiers collapse to the class means or in other words, to the simplex ETF (i.e., to a self-dual configuration).
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Figure 7: Product norm (ρ) and test error with respect to different training data sizes (N) for the three-layer
model (with non-overlapped convolutional image patches, kernel size = 3× 3, stride = 3) trained with LM
and square loss. The initialization scale is 0.1, weight decay λ = 0.001, no biases, batch size is 32, the initial
learning rate is 0.03with cosine annealing scheduler; we used the SGD optimizer (momentum = 0.9), test
data size = 2000 in a binary classification task on CIFAR10 dataset. (a) The table shows the product norm ρ,
mean training errors, mean test errors (average over the last 100 epochs), and generalization upper bound
for different N . (b) A bar plot for the generalization gap for different N . (c) Generalization error upper
bound is a constant (see text) times ( ρ√

N
). The bounds are almost not vacuous depending on the constant

(see text).

(NC4) For a given activation, the classifier’s decision collapses to simply choosing whichever class has the
closest train class mean (i.e., the nearest class center decision rule).
We now formally define the four Neural Collapse conditions. We consider a network fW (x) = WLh(x),
where h(x) ∈ Rp denotes the last layer feature embedding of the network, and WL ∈ RC×p contains the
parameters of the classifier. The network is trained on a C-class classification problem on a balanced dataset
S = {(xcn, ycn)}N,C

n=1,c=1 with N samples per class. We can compute the per-class mean of the last layer
features as follows

µc =
1

N

N∑
n=1

h(xcn), (26)

The global mean of all features as follows

µG =
1

C

∑
c

µc =
1

NC

C,N∑
c=1,n=1

h(xcn).

Furthermore, the second order statistics of the last layer features are computed as:

ΣW =
1

C

C∑
c=1

1

N

∑
n=1

(h(xcn)− µc)(h(xcn)− µc)
⊤

ΣB =
1

C

C∑
c=1

(µc − µG)(µc − µG)
⊤

ΣT =
1

NC

C,N∑
c=1,n=1

(h(xcn)− µG)(h(xcn)− µG)
⊤.

(27)

Here, ΣW measures the within-class-covariance of the features, ΣB is the between-class-covariance, and ΣT

is the total covariance of the features (ΣT = ΣW +ΣB).
We can now list the formal conditions for Neural Collapse:
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NC1 (Variability collapse) Variability collapse states that the variance of the feature embeddings of samples
from the same class tends to zero, or formally, Tr(ΣW )→ 0.

NC2 (Convergence to Simplex ETF) |∥µc − µG∥2 − ∥µc′ − µG∥2| → 0, or the centered class means of the
last layer features become equinorm. Moreover, if we define µ̃c =

µc−µG

∥µc−µG∥2
, then we have ⟨µ̃c, µ̃c′⟩ = − 1

C−1

for c ̸= c′, or the centered class means are also equiangular. The equinorm condition also implies that∑
c µ̃c = 0, i.e., the centered features lie on a simplex.

NC3 (Self-Duality) Ifwe collect the centered classmeans into amatrixM = [µc−µG], we have
∣∣∣∣∣∣ W⊤

∥W∥F
− M

∥M∥F

∣∣∣∣∣∣→
0, or that the classifier W and the last layer feature means M become duals of each other.

NC4 (Nearest Center Classification) The classifier implemented by the deep network eventually boils
down to choosing the closest mean last layer feature argmaxc⟨W c

L, h(x)⟩ → argminc∥h(x)− µc∥2.

Related Work on Neural Collapse: Since the empirical observation of Neural Collapse was made in
[12], a number of papers have studied the phenomenon in the so-called Unconstrained Features regime
[32, 33, 34, 39, 40]. The basic assumption underlying these proofs is that the features of a deep network at the
last layer can essentially be treated as free optimization variables, which converts the problem of finding the
parameters of a deep network that minimize the training loss, into a matrix factorization problem of factoring
one-hot class labels Y ∈ RC×CN into the last layer weightsW ∈ RC×p and the last layer featuresH ∈ Rp×CN .
In the case of the squared loss, the problem that they study is minW,H∥WH − Y ∥2 + λW ∥W∥2 + λH∥H∥2.
In this section, we show instead that we can predict the existence of Neural Collapse and its properties as a
consequence of our analysis of the dynamics of SGD on deep binary classifiers trained on the square loss
function with Lagrange Normalization and Weight Decay without any additional assumption. We first consider
the case of binary classification and show that NC follows from the analysis of the dynamics of the square
loss in the previous sections. The loss function is the same one defined in Equation (1), and we consider
minimization using SGD with a batch size of 1. After establishing Neural Collapse in this familiar setting, we
consider the multiclass setting where we derive the conditions of Neural Collapse from an analysis of the
squared loss function with weight decay and weight normalization.

5.1 Binary Classification
We prove in this section that Neural Collapse follows from the following property of the landscape of the
squared loss that we analyzed in the previous section:
Property 1 (Symmetric Quasi-interpolation (Binary Classification)). Consider a binary classification problem
with inputs in a feature spaceX and labels space {+1,−1}. A classifier fW : X → R symmetrically quasi-interpolates a
training dataset S = {(xn, yn)}Nn=1 if for all training examples ¯fWn = ynfW (xn) = 1− ϵ, where ϵ is the interpolation
gap.

We prove first that the property follows without any assumption at convergence from our previous analysis of
the landscape of the squared loss for binary classification.
Lemma 6. An overparameterized deep ReLU network for binary classification trained to convergence under the squared
loss in the presence of weight decay and weight normalization (WN) satisfies the symmetric quasi-interpolation property.
Furthermore, the gap to interpolation of the regularized network is ϵ = λ

µ2+λ where µ = 1
N

∑
i f̄i.

Proof. Consider the regularized square loss LS = 1
N

∑N
i=1(ρf̄i − 1)2 + λρ2. We recall the definitions made

earlier in section 3.2 of the margin f̄i = yifi, and the first and second order sample statistics of the margin µ =
1
N

∑N
i=1 f̄i,M = 1

N

∑N
i=1 f̄

2
i , σ

2 = M−µ2. We consider deep networks that are sufficiently overparameterized
to attain 100% accuracy on the training dataset, which means f̄i > 0. Since the weights of the deep network
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{Vk}Lk=1 are normalized and the data xi lie within the unit norm ball, we have that |f̄i| ≤ 1. Even though f̄i
could take values close to 1, the typically observed values of f̄i in our experiments are approximately 5×10−3.
For our purposes it suffices to note that there exists a maximum possible margin such that 0 < f̄i ≤ µ̄ for all
training examples for a given data set and network architecture.
Using these definitions, we can rewrite the deep network training problem as:

minρ,{Vk}L
k=1
LS = (M + λ)ρ2 − 2ρµ+ 1. (28)

All critical points (including minima) need to satisfy ∂LS
∂ρ = 0, from which we get ρ = µ

M+λ . If we plug this
back into the loss, our minimization problem becomes:

min{Vk}L
k=1

(M + λ)

(
µ

M + λ

)2

− 2
µ2

M + λ
+ 1

= min{Vk}L
k=1

1− µ2

M + λ

= min{Vk}L
k=1

σ2 + λ

µ2 + σ2 + λ

= min{Vk}L
k=1

1

1 + µ2

σ2+λ

.

(29)

Hence in order to minimize the loss we have to find {Vk}Lk=1 that maximize µ2 and minimize σ2. Since we
assumed that the network is expressive enough to attain any value, the loss is minimized when σ2 = 0 and
µ = µ̄. Thus all training examples have the same margin.
If σ2 → 0, then all margins tend to the same value, f̄i → µ̄, and the optimum value of ρ is ρ = µ̄

µ̄2+λ . This
means that the gap to interpolation is ϵ = 1− ρµ̄ = λ

λ+µ̄2 .

The prediction σ → 0 has empirical support: we show in Figure 8 that all the margins converge to be roughly
equal. Once within class variability disappears, and for all training samples, the last layer features collapse
to their mean. The outputs and margins then also collapse to the same value. We can see this in the left
plot of Figure 10 where all of the margin histograms are concentrated around a single value. We visualize
the evolution of the training margins over the training epochs in Figure 8 which shows that the margin
distribution concentrates over time. At the final epoch the margin distribution (colored in yellow) is much
narrower than at any intermediate epochs. Notice that our analysis of the origin of the SGD noise shows
that “strict” NC1 never happens with SGD, in the sense that the margins are never, not even asymptotically,
exactly equal to each other, but just very close!
We now prove that Neural Collapse follows from property 1.
Theorem 5. Let S = {(xn, yn)}Nn=1 be a dataset. Let (ρ, V ) be the parameters of a ReLU network f such that
VL has converged when training using SGD with batches of size 1 on the square loss with LN+WD. Let µ+ =
1
N

∑N
n=1,yn=1 h(xn), µ− = 1

N

∑N
n=1,yn=−1 h(xn). Consider points of convergence of SGD that satisfy Property 1.

Those points also satisfy the conditions of Neural Collapse as described below.

• NC1: µ+ = h(xn) for all n ∈ [N ], yn = 1, µ− = h(xn) for all n ∈ [N ], yn = −1;

• NC2: µ+ = −µ−, which is the structure of an ETF with two vectors;

• NC3: VL ∝ µ+, µ−;

• NC4: sign(ρfV (x)) = argminc∈{+1,−1} ∥µc − h(x)∥.
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Figure 8: Histogram of ynfn across 1000 training epochs for binary classification on the CIFAR10 dataset with
Lagrange multiplier and weight decay (λ) = 0.001, initial learning rate 0.03, initialization 0.9. The histogram
narrows as training progresses. The final histogram (in red) is concentrated, as expected for the emergence
of NC1. The right side of the plot shows the time course of the top ρ over the same 1000 epochs.

Proof. The update equations for SGD on the square loss function with LN+WD are given by:

V
(t+1)
L = V

(t)
L − η

∂L
∂V

(t)
L

=⇒ V
(t+1)
L = V

(t)
L − η ×

(
2ρ(ρf̄n − 1)ynh(xn) + 2ν

(t)
L V

(t)
L

)
.

(30)

We can apply the unit norm constraints ||V (t+1)
L ||2 = 1 and ||V (t)

L ||2 = 1 and ignore all terms that are O (η2)
to compute ν(t)L as:

2ν
(t)
L = 2ρynV

(t)⊤
L h(xn)(1− ρf̄n)

=⇒ ν
(t)
L = ρf̄n(1− ρf̄n).

(31)

This gives us the following SGD update:

V
(t+1)
L = V

(t)
L − η × 2ρyn(ρf̄n − 1)

(
h(xn)− fnV

(t)
L

)
. (32)

Using property 1, we can see that for every training sample in class yn = 1, h(xn) =
(1−ϵ)

ρ VL, and for every
training sample in class yn = −1, h(xn) =

(−1+ϵ)
ρ VL. This shows that within class variability has collapsed

and that all last layer features collapse to their mean, which is the condition for NC1. We can also see that
µ+ = −µ−, which is the condition for NC2 when there are 2 vectors in the Simplex ETF. The SGD convergence
condition also tells us that VL ∝ µ+ and VL ∝ µ−, which gives us the NC3 condition. NC4 follows then from
NC1-NC2, as shown by theorems in [12]

5.2 Multiclass Classification
In the previous section we proved the emergence of Neural Collapse in the case of a binary classifier with
scalar outputs, in order to be consistent with our framework in section 3. The phenomenon of Neural
Collapse was however defined in [12] for the case of multiclass classification with deep networks. In this
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section we describe how NC emerges in this setting from the minimization of the squared loss with Weight
Normalization and Weight Decay regularization. We also show in Figure 9 that our networks show NC,
similarly to experiments reported in [12].
We consider a classification problem with C classes with a balanced training dataset S = ∪Cc=1Sc =
∪Cc=1{(xcn, c)}Nn=1 = {(xn, yn)} that has N training examples Sc = {(xcn, c)}Nn=1 per-class c ∈ [C]. The
labels are represented by the unit vectors {ec}Cc=1 in RC . Since we consider deep homogeneous networks that
do not have bias vectors, we center the one-hot labels, and scale them so that they have maximum output
1. We denote the resulting labels (for a class-balanced dataset) as ẽc =

[
−1

C−1, . . . ,
−1
C−1 , 1,

−1
C−1 , . . . ,

−1
C−1

]
,

where the cth coordinate is 1. We consider a deep ReLU network fW : Rd → RC , which takes the
form fW (x) = WLσ(WL−1 . . .W2σ(W1x) . . .). However, we stick to the normalized reparameterization
of the deep ReLU network as f(x) = ρVLσ(VL−1 . . . V2σ(V1x) . . .). We train this normalized network with
SGD on the square loss with Lagrange multipliers and Weight Decay. This architecture differs from the
one considered in section 3.4 in that it has C outputs instead of a scalar output. Let the output of the
network be ρfV (x) = [ρf

(1)
V (x) . . . ρf

(C)
V (x)]⊤, and the target vectors be yn = [y

(1)
n . . . y

(C)
n ]⊤. We will

also follow the notation of [12] and use h : Rd → Rp to denote the last layer features of the deep net-
work. This means that f (c)

V (x) = ⟨V c
L, h(x)⟩. The squared loss function with weight decay is written as

LS(ρ, {Vk}Lk=1) =
1

NC

∑C
c=1

∑N
n=1 ||ycn − ρfV (xcn)||2 + λρ2.

Property 2 (Symmetric Quasi-interpolation (Multiclass Classification)). Consider a C-class classification
problem with inputs in a feature space X and labels space RC . A classifier f : X → RC symmetrically quasi-
interpolates a training dataset S = ∪Cc=1Sc = ∪Cc=1{(xcn, ycn)}Nn=1 if for all training examples xcn, f(xcn) ∝ ẽc.

Similar to the binary classification case, we show that this property arises from an analysis of the squared
loss landscape for multiclass classification.
Lemma 7. An overparameterized deep ReLU classifier trained to convergence under the squared loss in the presence of
weight decay and weight normalization (WN) satisfies the symmetric quasi-interpolation property

Proof. Consider the regularized square loss LS = 1
CN

∑C
c=1

∑N
n=1 ∥ρfV (xcn)− ẽc∥2 + λρ2. In the multiclass

casewedefine the first order statistics of the output of the normalized network asµ = 1
CN

∑C
c=1

∑N
n=1⟨fV (xcn), ẽc⟩,

and M = 1
CN

∑C
c=1

∑N
n=1 ∥fV (xcn)∥2. We consider deep networks that are overparameterized enough to

attain 100% accuracy on the training dataset, which means ⟨fV (xcn), ẽc⟩ > 0. Since the weights of the
deep network {Vk}Lk=1 are normalized and the data xcn lie within the unit norm ball, we also have that
∥fV (xcn)∥ ≤ 1. However, similar to the binary case, we observe that the norm of fV (xcn) takes values of the
order of 10−3.
Using these definitions, we can rewrite the deep network training problem as:

minρ,{Vk}L
k=1
LS = (M + λ)ρ2 − 2ρµ+

C

C − 1
. (33)

All critical points (including minima) need to satisfy ∂LS
∂ρ = 0, from which we get ρ = µ

M+λ . If we plug this
back into the loss, our minimization problem becomes:

min{Vk}L
k=1

(M + λ)×
(

µ

M + λ

)2

− 2
µ2

M + λ
+

C

C − 1

= min{Vk}L
k=1

C

C − 1
− µ2

M + λ
.

(34)

Hence in order to minimize the loss we have to find {Vk}Lk=1 that maximizes µ2

M+λ . Since the network is
expressive enough to attain any value, and the norm of fV (xcn) is bounded, we see that the loss is minimized
when µ2 is maximized. That is, when f(xcn) ∝ ẽc for all training examples.
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We now consider the optimization of the squared loss on deep networks with Weight Normalization and
Weight Decay:

LS(ρ, {Vk}Lk=1) =
1

NC

C∑
c=1

N∑
n=1

||ycn − ρfV (xcn)||2 +
L∑

k=1

νk
(
||Vk||2 − 1

)
+ λρ2. (35)

At each time point t the optimization process selects a random class-balanced batch S ′ = ∪Cc=1 ∪bn=1 S ′c
includingB samples per-class from S ′c ⊂ Sc and updates the scale and weights of the network is the following
manner V ← V − η ∂LS′ (ρ,V )

∂V , ρ← ρ− η ∂LS′ (ρ,V )
∂ρ where η > 0 is a predefined learning rate and b is a divisor

of N . A convergence point of the optimization process is a point (ρ, V ) that will never be updated by any
possible sequence of steps taken by the optimization algorithm. Specifically, the convergence points of the
proposed method are all points ρ, V for which ∂LS′ (ρ,V )

∂V = 0 and ∂LS′ (ρ,V )
∂ρ = 0 for all class-balanced batches

S ′ ⊂ S.
Theorem 6. Let S = ∪Cc=1{(xcn, c)}Nn=1 be a dataset and B be a divisor of N . Let (ρ, V ) be the parameters of a ReLU
network fW such that VL has converged when training using SGD with balanced batches of size B = bC on the square
loss with LN+WD. Let µc = 1

N

∑N
n=1 h(xcn), µG = 1

C

∑C
c=1 µc and M = [. . . µc − µG . . . ] ∈ Rp×C . Consider

points of convergence of SGD that satisfy Property 2. Then, those points also satisfy the conditions of Neural Collapse
as described below.

• NC1: µc = h(xcn) for all n ∈ [N ];

• NC2: the vectors {µc − µG}Cc=1 form an ETF;

• NC3: V ⊤
L = M

∥M∥F
;

• NC4: argmaxc∈[C] f
c
W (x) = argminc∈[C] ∥µc − h(x)∥.

Proof. Our training objective is the loss function described in (35). The network is trained using SGD along
with Lagrange normalization and weight decay. We use SGD with balanced batches to train the network.
Each step taken by SGD takes the form−η ∂LS′

∂V , where S ′ ⊂ S is a balanced batch containing exactly b samples
per class. We consider limit points of the learning procedure, meaning that ∂LS′

∂V = 0 for all balanced batches
S ′. Let S ′ = ∪Cc=1 ∪bn=1 {(x̂cn, ŷcn)} be such a balanced batch. We use SGD, where at each time t the batch S ′
is drawn at random from S , to study the time evolution of the normalized parameters VL in the limit η → 0.

V
(t+1)
L = V

(t)
L − η

∂LS′

∂V
(t)
L

=⇒ V
(t+1)
L = V

(t)
L − η ×

(
1

B

C∑
c′=1

b∑
n=1

2ρ(ρfV (xc′n)− ẽc′)h(xc′n)
⊤ + 2ν

(t)
L V

(t)
L

) (36)

We can apply the unit norm constraints ||V (t+1)
L ||2F = tr(V (t+1)⊤

L V
(t+1)
L ) = 1 and ||V (t)

L ||2F = tr(V (t)⊤
L V

(t)
L ) = 1

and ignore all terms that are O (η2) to compute ν(t)L as:

2ν
(t)
L = − 1

B

C∑
c′=1

b∑
n=1

2ρtr
(
V

(t)⊤
L (ρfV (xc′n)− ẽc′)h(xc′n)

⊤
)

=⇒ ν
(t)
L = − 1

B

C∑
c′=1

b∑
n=1

ρtr
(
(V

(t)
L h(xc′n))

⊤(ρfV (xc′n)− ẽc′)
)

= − 1

B

C∑
c′=1

b∑
n=1

ρfV (xc′n)
⊤(ρfV (xc′n)− ẽc′)

(37)
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This means that the (stochastic) gradient of the loss with respect to the last layer VL, and each classifier vector
V c
L with Lagrange Normalization can be written as (we drop the time index t for clarity):

∂LS′

∂VL
=
−2ρ
B

C∑
c′=1

b∑
n=1

fV (xc′n)
⊤(ρfV (xc′n)− ẽc′)VL − (ρfV (xc′n)− ẽc′)h(xc′n)

⊤

∂LS′

∂V c
L

=
−2ρ
B

C∑
c′=1

b∑
n=1

fV (xc′n)
⊤(ρfV (xc′n)− ẽc′)V

c
L − (ρf

(c)
V (xc′n)− ẽ

(c)
c′ )h(xc′n)

(38)

Let us analyze the equilibrium parameters at the last layer, considering each classifier vector V c
L of VL,

separately:

0 =
∂LS′

∂V c
L

=
−2ρ
B

C∑
c′=1

b∑
n=1

fV (xc′n)
⊤(ρfV (xc′n)− ẽc′)V

c
L − (ρf

(c)
V (xc′n)− ẽ

(c)
c′ )h(xc′n)

=
−2ρ
B

b∑
n=1

fV (xcn)
⊤(ρfV (xcn)− ẽc)V

c
L − (ρf

(c)
V (xcn)− 1)h(xcn)

− 2ρ

B

∑
c′∈[C]\{c}

b∑
n=1

fV (xc′n)
⊤(ρfV (xc′n)− ẽc′)V

c
L −

(
ρf

(c)
V (xc′n) +

1

C − 1

)
h(xc′n).

(39)

Using Property 2 and considering solutions that achieve symmetric quasi-interpolation, with ρfV (x̂cn) = αẽc,
we have

2ρ

B

b∑
n=1

(α− 1)h(xcn)−
2ρ

B

∑
c′∈[C]\{c}

b∑
n=1

α− 1

C − 1
h(xc′n)−

2α(α− 1)C

C − 1
V c
L = 0. (40)

In addition, consider a second batch S ′′ that differs from S ′ by only one sample x′
cn instead of xcn from class

c. By applying the previous Eq. (40) for S ′ and for S ′′, we can obtain h(xcn) = h(x′
cn), which proves NC1.

Let S = ∪ki=1Si be a partition of S into k = N/b (an integer) disjoint batches. Since our data is balanced, we
obtain that

0 =
1

k

k∑
i=1

∂LSi(ρ, V )

∂V c
L

=
∂LS(ρ, V )

∂V c
L

=
2ρ

NC

C∑
c′=1

N∑
n=1

fV (xc′n)
⊤(ρfV (xc′n)− ẽc′)V

c
L − (ρf

(c)
V (xc′n)− ẽ

(c)
c′ )h(xc′n)

=
2ρ

NC

N∑
n=1

(α− 1)h(xcn)−
2ρ

NC

∑
c′∈[C]\{c}

N∑
n=1

α− 1

C − 1
h(xc′n)−

2α(α− 1)C

C − 1
V c
L.

(41)

Under the conditions of NC1 we can simply write µc = h(xcn) for all n ∈ [N ] and c ∈ [C]. Let us denote the
global feature mean by µG = 1

C

∑C
c=1 µc. This means we have:

∂LS(ρ, V )

∂V c
L

= 0 =⇒ V c
L =

ρ

αC
· (µc − µG). (42)

This implies that the last layer parameters VL are a scaled version of the centered class-wise feature matrix
M = [. . . µc − µG . . .]. Thus at equilibrium, with quasi interpolation of the training labels, we obtain
V ⊤
L

∥VL∥F
= M

∥M |F .
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From the SGD equations, we can also see that at equilibrium, with quasi interpolation, all classifier vectors in
the last layer (V c

L , and hence µc − µG) have the same norm:

∥V c
L∥22 =

1
NC

∑C
c′=1

∑N
n=1(ρf

(c)
V (xc′n)− ẽ

(c)
c′ )ρf

(c)
V (xc′n)

1
NC

∑C
c′=1

∑N
n=1⟨ρfV (xc′n)− ẽc′ , ρfV (xc′n)⟩

=

α(α−1)
C + α(α−1)

C(C−1)

α(α− 1)× C
C−1

=
1

C

(43)

From the quasi-interpolation of the correct class label we have that ⟨V c
L, µc⟩ = α

ρ which means ⟨V c
L, µG⟩ +

⟨V c
L, µc − µG⟩ = α

ρ . Now using Equation (42)

⟨V c
L, µG⟩ =

α

ρ
− αC

ρ
∥V c

L∥22

=
α

ρ
− αC

ρ
× 1

C
= 0

(44)

From the quasi-interpolation of the incorrect class labels, we have that ⟨V c
L, µc′⟩ = −α

ρ(C−1) , which means
⟨V c

L, µc′ − µG⟩+ ⟨V c
L, µG⟩ = −α

ρ(C−1) . Plugging in the previous result and using (43) yields

αC

ρ
× ⟨V c

L, V
c′

L ⟩ =
−α

ρ(C − 1)

=⇒ ⟨Ṽ c
L, Ṽ

c′

L ⟩ =
1

∥V c
L∥22
× −1

C(C − 1)
= − 1

C − 1
.

(45)

Here Ṽ c
L =

V c
L

∥V c
L∥2

, and we use the fact that all the norms ∥V c
L∥2 are equal. This completes the proof that the

normalized classifier parameters form an ETF. Moreover since V c
L ∝ µc − µG and all the proportionality

constants are independent of c, we obtain∑c V
c
L = 0. This completes the proof of the NC2 condition. NC4

follows then from NC1-NC2, as shown by theorems in [12].

Remarks

• The analysis of the loss landscape and of the qualitative dynamics under the square loss in section 3.5
and in section 3.3 implies that all quasi-interpolating solutions with ρ ≥ ρ0 and λ > 0 that satisfying
assumption 2 yield Neural Collapse and have its four properties.

• SGD is a necessary requirement in our proof of NC1.
• Our analysis implies that there is no direct relation between Neural Collapse and generalization. In fact,

a careful look at our derivation suggests that NC1 to NC4 should take place for any quasi-interpolating
solutions (in the square loss case), including solutions that do not have a large margin. In particular,
our analysis predicts Neural Collapse for datasets with fully random labels – a prediction which has
been experimentally verified.

6 SGD bias towards low-rank weight matrices and intrinsic SGD noise
In the previous sections we assumed that ρ and Vk are trained using GF. In this section we consider a slightly
different setting where SGD is applied instead of GF. Specifically, Vk and ρ are first initialized and then
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iteratively updated simultaneously in the following manner

ρ← ρ− η
∂LS′(ρ, {Vk}Lk=1)

∂ρ
= ρ− η

2

B

∑
(xn,yn)∈S′

(1− ρf̄n)f̄n − 2ηλρ

Vk ← Vk −
∂LS′(ρ, {Vk}Lk=1)

∂Vk
= Vk − η

2

B

∑
(xn,yn)∈S′

(1− ρf̄n)ρ
∂f̄n
∂Vk

− 2ηνkVk.

(46)

where S ′ is selected uniformly as a subset of S of size B, η > 0 is the learning rate and νk is computed
according to (4) with S replaced by S ′.

6.1 Low-rank bias
An intriguing argument for small rank weight matrices is the following observation that follows from
Equation (5) (see also [7]). The Lemma below shows that, in practice, SGD cannot achieve zero gradient for
all the mini-batches of size smaller than N , because otherwise all the weight matrices would have very small
rank which is incompatible, for generic data sets, with quasi-interpolation.
Lemma 8. Let fW be a neural network. Assume that we iteratively train ρ and {Vk}Lk=1 using the process de-
scribed above with weight decay λ > 0. Suppose that training converges, that is ∂LS′ (ρ,{Vk}L

k=1)
∂ρ = 0 and ∀ k ∈

[L] :
∂LS′ (ρ,{Vk}L

k=1)
∂Vk

= 0 for all mini-batches S ′ ⊂ S of size B < |S|. Assume that ∀ n ∈ [N ] : f̄n ̸= 0. Then, the
ranks of the matrices Vk are at most ≤ 2.

Proof. Let fV (x) = VLσ(VL−1 . . . σ(V1x) . . . ) be the normalized neural network, where Vl ∈ Rdl+1×dl and
∥Vl∥ = 1 for all l ∈ [L]. We would like to show that the matrix ∂fV (x)

∂Vk
is of rank ≤ 1. We note that for any

given vector z ∈ Rd, we have σ(v) = diag(σ′(v)) · v (where σ is the ReLU activation function). Therefore, for
any input vector x ∈ Rn, the output of fV can be written as follows,

fV (x) = VLσ(VL−1 . . . σ(V1x) . . . )

= VL ·DL−1(x;V ) · · ·D1(x;V ) · V1 · x,
(47)

whereDl(x;V ) = diag[σ′(ul(x;V )))] and ul(x;V ) = Vlσ(Vl−1 . . . σ(V1x) . . . ). We denote by ul,i(x;V ) the i’th
coordinate of the vector ul(x;V ). We note that ul(x;V ) are continuous functions of V . Therefore, assuming
that none of the coordinates ul,i(x;V ) are zero, there exists a sufficiently small ball around V for which
ul,i(x;V ) does not change its sign. Hence, within this ball, σ′(ul,i(x;V )) are constant. We define a set
V := {V | ∀l ≤ L : ∥Vl∥ = 1} and Vl,i = {V ∈ V | ul,i(x;V ) = 0}. We note that as long as x ̸= 0, the set Vl,i is
negligible within V . Since there is a finite set of indices l, i, the set⋃l,i Vl,i is also negligible within V .
LetV be a set ofmatrices forwhich none of the coordinatesul,i(x;V ) are zero. Then, thematrices {Dl(x;V )}L−1

l=1

are constant in the neighborhood of V , and therefore, their derivativewith respect to Vk are zero. Let a⊤ = VL ·
DL−1(x;V )VL−1 · · ·Vk+1Dk(x;V ) and b = Dk−1(x) ·Vk−1 · · ·V1x. We canwrite fV (x) = a(x;V )⊤ ·Vk ·b(x;V ).
Since the derivatives of a(x;V ) and b(x;V )with respect to Vk are zero, by applying ∂a⊤Xb

X = ab⊤, we have
∂fV (x)
∂Vk

= a(x;V ) · b(x;V )⊤ which is a matrix of rank at most 1. Therefore, ∂f̄n
∂Vk

= yn
∂fV (xn)

∂Vk
is a matrix of

rank at most 1. Therefore, for any input xn ̸= 0, with measure 1, ∂f̄n
∂Vk

is a matrix of rank at most 1.
Since ∀ k ∈ [L] :

∂LS′ (ρ,{Vk}L
k=1)

∂Vk
= 0 for all mini-batches S ′ = {(xij , yij )}Bj=1 ⊂ S of size B < |S|, we have

∂LS′(ρ, {Vk}Lk=1)

∂Vk
=

2

B
ρ

B∑
j=1

[(
1− ρf̄ij

)(
−Vkf̄ij +

∂f̄ij
∂Vk

)]
= 0. (48)
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Since interpolation is impossible when training with λ > 0, there exists at least one n ∈ [N ] for which ρf̄n ̸= 1.
We consider two batches S ′i and S ′j of size B that differ by sample, (xi, yi) and (xj , yj). We have

∀ i, j ∈ [N ] : 0 =
∂LS′

i
(ρ, {Vk}Lk=1)

∂Vk
−

∂LS′
j
(ρ, {Vk}Lk=1)

∂Vk

=
2

B
· ρ
[(
1− ρf̄i

)(
−Vkf̄i +

∂f̄i
∂Vk

)
−
(
1− ρf̄j

)(
−Vkf̄j +

∂f̄j
∂Vk

)]
.

(49)

Assume that there exists a pair i, j ∈ [N ] for which (1− ρf̄i)f̄i ̸= (1− ρf̄j)f̄j . Then, we can write

Vk =

[
(1− ρf̄i) · ∂f̄i

∂Vk
+ (1− ρf̄j) · ∂f̄j

∂Vk

]
[(1− ρf̄i)f̄i − (1− ρf̄j)f̄j ]

. (50)

Since ∂f̄i
∂Vk

and ∂f̄j
∂Vk

are matrices of rank ≤ 1 (see the analysis above), we obtain that Vk is of rank ≤ 2.
Otherwise, assume that for all pairs i, j ∈ [N ], we have α = (1− ρf̄i)f̄i = (1− ρf̄j)f̄j . In this case we obtain
that for all i, j ∈ [N ], we have (

1− ρf̄i
)
· ∂f̄i
∂Vk

=
(
1− ρf̄j

)
· ∂f̄j
∂Vk

= U. (51)

Therefore, since α = (1− ρf̄i)f̄i = (1− ρf̄j)f̄j , by Equation (48),

0 =
2

B
ρ

B∑
j=1

[(
1− ρf̄ij

)(
−Vkf̄ij +

∂f̄ij
∂Vk

)]
= −2ραVk + 2ρU. (52)

Since the network cannot perfectly fit the dataset when trained with λ > 0, we obtain that there exists
i ∈ [N ] for which (1− ρf̄i) ̸= 0. Since f̄i ̸= 0 for all i ∈ [N ], this implies that α ̸= 0. We conclude that Vk is
proportional to U which is of rank ≤ 1.

All gradient descent methods try to converge to points in parameter space that have zero or very small
gradient, in other words they try to minimize ∥V̇k∥, ∀k. Assuming separability, ℓn = (1 − ρf̄n) > 0,∀n.
Equation (10) then implies

∥V̇k∥ =
2ρ

N

∑
n∈B

ℓn∥
∂f̄n
∂Vk

− fnVk∥, (53)

which predicts that the norm of the SGD updates at layer k should reflects, asymptotically, the rank of Vk.

6.1.1 Is Low-Rank Bias Related to Generalization?

An obvious question is whether a deep ReLU network that fits the data generalizes better than another one if
the rank of its weight matrices is lower. The following result is stated in [8]:
Theorem 7. Let fV be a normalized neural network, trained with SGD under square loss in the presence of WN.
Assume that the weight matrix Vk of dimensionality (n, n) has rank r < n. Then its contribution to the Rademacher
complexity of the network will be

√
r
n (instead of 1 as in the typical bound).

6.2 Origin of SGD noise
Lemma 8 shows that there cannot be convergence to a unique set of weights {Vk}Lk=1 that satisfy equilibrium
for all minibatches. More details of the argument are illustrated in [54, 55]. When λ = 0, interpolation of
all data points is expected: in this case, the GD equilibrium can be reached without any constraint on the
weights. This is also the situation in which SGD noise is expected to essentially disappear: compare the
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histograms on the left and the right hand side of Figure 10. Thus, during training, the solution {Vk}Lk=1 is
not the same for all samples: there is no convergence to a unique solution but instead fluctuations between
solutions during training. The absence of convergence to a unique solution is not surprising for SGD when
the landscape is not convex.

7 Summary
The dynamics of GF In this paper we have considered a model of the dynamics of, first, gradient flow,
and then Stochastic Gradient Descent, in overparametrized ReLU neural networks trained for square loss
minimization. Under the assumption of convergence to zero loss minima, we have shown that solutions have
a bias toward small ρ, defined as the product of the Frobenius norms of each layer’s (unnormalized) weight
matrix. We assume that during training there is normalization using a Lagrange multiplier (LM) of each
layer weight matrix but the last one, together with Weight Decay (WD) with the regularization parameter λ.
Without weight decay, the best solution would be the interpolating solution with minimum ρ that may be
achieved with appropriate initial conditions are appropriate.

Remarks

• The bias towards small ρ solutions induced by regularization with λ > 0 may be replaced – when
λ = 0 – by an implicit bias induced by small initialization. With appropriate parameter values, small
initialization allows convergence to the first quasi-interpolating solution for increasing ρ from ≈ 0 to
ρ0. For λ = 0we have empirically observed solutions with large ρ that are suboptimal and probably
similar to the NTK regime.

• A puzzle that remains open is why BN leads to better solutions than LN and WN, despite similarities
between them. WN is easier to formalize mathematically as LN, which is the main reason for the role it
plays in this paper.

Generalization and bounds Building on our analysis of the dynamics of ρ we derive new norm-based
generalization bounds for CNNs for the special case of non-overlapping convolutional patches. These bounds
show a) that generalization for CNNs can be orders of magnitude better than for dense networks and b) that
these bounds can be empirically loose but non-vacuous despite overparametrization.

Remarks

• For λ > 0 a main property of the minimizers that upper bounds their expected error is ρ, which is the
inverse of the margin: we prove that among all the quasi-interpolating solutions the ones associated
with smaller ρ have better bounds on the expected classification error.

• The situation here is somewhat similar to the linear case: for overparametrized networks the best
solution in terms of generalization is the minimum norm solution towards which GD is biased.

• Large margin is usually associated with good generalization [56]; in the meantime, however, it is also
broadly recognized that margin alone does not fully account for generalization in deep nets [28, 31, 57].
Margin in fact provides an upper bound on generalization error, as shown in section 4. Larger margin
gives a better upper bound on the generalization error for the same network trained on the same data.
We have verified empirically this property by varying the margin using different degrees of random
labels in a binary classification task. While training gives perfect classification and zero square loss, the
margin on the training set together with the test error decreases with the increase in the percentage
of random labels. Of course large margin in our theoretical analysis is associated with regularization
which helps minimizing ρ. Since ρ is the product of the Frobenius norm, its minimization is directly
related to minimizing a Bayes prior[58] which is itself directly related to minimum description length
principles.
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• We do not believe that flat minima directly affect generalization. As we described in an earlier section,
degenerate minima correspond to solutions that have zero empirical loss (for λ = 0). Minimizing the
empirical loss is a (almost) necessary condition for good generalization. It is not, however, sufficient
since minimization of the expected error also requires a solution with low complexity.

• The upper bound given in section 4, however, does not explain by itself details of the generalization
behavior that we observe for different initializations (see Figure 5), where small differences in margin
are actually anti-correlated with small differences in test error. We conjecture that, together, margin
(related to ρ) and rank (related to RN (F)) may be sufficient to explain generalization.

Neural Collapse Another consequence of our analysis is a proof of Neural Collapse for deep networks
trained with square loss in the binary classification case without any assumption. In particular, we prove
that training the network using SGD with weight decay, induces a bias towards low-rank weight matrices
and yields SGD noise in the weight matrices and in the margins, which makes exact convergence impossible,
even asymptotically.

Remarks

• A natural question is whether Neural Collapse is related to solutions with good generalization. Our
analysis suggests that this is not the case, at least not directly: Neural Collapse is a property of the
dynamics, independently of the size of the margin which provides an upper bound on the expected
error. In fact, our prediction of Neural Collapse for randomly labeled CIFAR10, was confirmed originally
in then preliminary experiments by our collaborators (Papyan et al.) and more recently in other papers
(see for instance, [33]).

• Margins, however, do converge to each other but only within a small ϵ, implying that the first condition
for Neural Collapse [12] is satisfied only in this approximate sense. This is equivalent to saying that
that SGD does not converge to a unique solution that corresponds to zero gradient for all data point.

Conclusion Finally, we would like to emphasize that the analysis of this paper supports the idea that the
advantage of deep networks relative to other standard classifiers is greater for the problems to which sparse
architectures such as CNNs can be applied. The reason is that CNNs reflect the function graph of target
functions that are compositionally sparse and thus can be approximated well by sparse networks without
incurring in the curse of dimensionality. Despite overparametrization the compositionally sparse networks
can then show good generalization.
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Figure 9: Neural Collapse occurs during training for binary classification. This figure is similar to other
published results on NC, such as for instance [12] for the case of exponential-type loss function. The key
conditions for Neural Collapse are: (i) NC1 - Variability collapse, which is measured by Tr(ΣWΣ−1

B ), where
ΣW ,ΣB are the within and between class covariances, (ii) NC2 - equinorm and equiangularity of the mean
features {µc} and classifiers {Wc}. We measure the equinorm condition by the standard deviation of the
norms of the means (in red) and classifiers (in blue) across classes, divided by the average of the norms, and
the equiangularity condition by the standard deviation of the inner products of the normalized means (in
red) and the normalized classifiers (in blue), divided by the average inner product (this figure is similar
to Figure 4 in [12]; notice the small scale of the fluctuations), and (iii) NC3 - Self-duality or the distance
between the normalized classifiers and mean features. This network was trained on two classes of CIFAR10
with Weight Normalization and Weight Decay = 5e-4, learning rate 0.067, for 750 epochs with a stepped
learning rate decay schedule.
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Figure 10: Training margins computed over 10 runs for binary classification on CIFAR10 trained with square
loss, Lagrange multiplier normalization, and Weight Decay (λ) = 0.001 (left) and without Weight Decay
(right, λ = 0) for different initializations (init. = 0.8, 0.9, 1, 1.2, 1.3 and 1.5) with SGD and minibatch size of
128. The margin distribution is Gaussian-like with standard deviation≈ 10−4 over the training set (N = 104).
The margins without Weight Decay result in a range of smaller margin values, each with essentially zero
variance. As mentioned in the text the norms of the convolutional layers is just the norm of the filters.
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